BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 24462206)

  • 1. Structural asymmetry in the closed state of mitochondrial Hsp90 (TRAP1) supports a two-step ATP hydrolysis mechanism.
    Lavery LA; Partridge JR; Ramelot TA; Elnatan D; Kennedy MA; Agard DA
    Mol Cell; 2014 Jan; 53(2):330-43. PubMed ID: 24462206
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Symmetry broken and rebroken during the ATP hydrolysis cycle of the mitochondrial Hsp90 TRAP1.
    Elnatan D; Betegon M; Liu Y; Ramelot T; Kennedy MA; Agard DA
    Elife; 2017 Jul; 6():. PubMed ID: 28742020
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calcium binding to a remote site can replace magnesium as cofactor for mitochondrial Hsp90 (TRAP1) ATPase activity.
    Elnatan D; Agard DA
    J Biol Chem; 2018 Aug; 293(35):13717-13724. PubMed ID: 29991590
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamics-based community analysis and perturbation response scanning of allosteric interaction networks in the TRAP1 chaperone structures dissect molecular linkage between conformational asymmetry and sequential ATP hydrolysis.
    Verkhivker GM
    Biochim Biophys Acta Proteins Proteom; 2018 Aug; 1866(8):899-912. PubMed ID: 29684503
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Structural Asymmetry of Mitochondrial Hsp90 (Trap1) Determines Fine Tuning of Functional Dynamics.
    Moroni E; Agard DA; Colombo G
    J Chem Theory Comput; 2018 Feb; 14(2):1033-1044. PubMed ID: 29320629
    [TBL] [Abstract][Full Text] [Related]  

  • 6. O-GlcNAcylation suppresses TRAP1 activity and promotes mitochondrial respiration.
    Kim S; Backe SJ; Wengert LA; Johnson AE; Isakov RV; Bratslavsky MS; Woodford MR
    Cell Stress Chaperones; 2022 Sep; 27(5):573-585. PubMed ID: 35976490
    [TBL] [Abstract][Full Text] [Related]  

  • 7. S-nitrosylation affects TRAP1 structure and ATPase activity and modulates cell response to apoptotic stimuli.
    Faienza F; Lambrughi M; Rizza S; Pecorari C; Giglio P; Salamanca Viloria J; Allega MF; Chiappetta G; Vinh J; Pacello F; Battistoni A; Rasola A; Papaleo E; Filomeni G
    Biochem Pharmacol; 2020 Jun; 176():113869. PubMed ID: 32088262
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Solution structure of Plasmodium falciparum Hsp90 indicates a high flexible dimer.
    Silva NSM; Torricillas MS; Minari K; Barbosa LRS; Seraphim TV; Borges JC
    Arch Biochem Biophys; 2020 Sep; 690():108468. PubMed ID: 32679196
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 2.4 Å resolution crystal structure of human TRAP1NM, the Hsp90 paralog in the mitochondrial matrix.
    Sung N; Lee J; Kim JH; Chang C; Tsai FT; Lee S
    Acta Crystallogr D Struct Biol; 2016 Aug; 72(Pt 8):904-11. PubMed ID: 27487821
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The conserved arginine 380 of Hsp90 is not a catalytic residue, but stabilizes the closed conformation required for ATP hydrolysis.
    Cunningham CN; Southworth DR; Krukenberg KA; Agard DA
    Protein Sci; 2012 Aug; 21(8):1162-71. PubMed ID: 22653663
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two closed ATP- and ADP-dependent conformations in yeast Hsp90 chaperone detected by Mn(II) EPR spectroscopic techniques.
    Giannoulis A; Feintuch A; Barak Y; Mazal H; Albeck S; Unger T; Yang F; Su XC; Goldfarb D
    Proc Natl Acad Sci U S A; 2020 Jan; 117(1):395-404. PubMed ID: 31862713
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel N-terminal extension in mitochondrial TRAP1 serves as a thermal regulator of chaperone activity.
    Partridge JR; Lavery LA; Elnatan D; Naber N; Cooke R; Agard DA
    Elife; 2014 Dec; 3():. PubMed ID: 25531069
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intrinsic inhibition of the Hsp90 ATPase activity.
    Richter K; Moser S; Hagn F; Friedrich R; Hainzl O; Heller M; Schlee S; Kessler H; Reinstein J; Buchner J
    J Biol Chem; 2006 Apr; 281(16):11301-11. PubMed ID: 16461354
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mitochondrial Hsp90 is a ligand-activated molecular chaperone coupling ATP binding to dimer closure through a coiled-coil intermediate.
    Sung N; Lee J; Kim JH; Chang C; Joachimiak A; Lee S; Tsai FT
    Proc Natl Acad Sci U S A; 2016 Mar; 113(11):2952-7. PubMed ID: 26929380
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intra- and intermonomer interactions are required to synergistically facilitate ATP hydrolysis in Hsp90.
    Cunningham CN; Krukenberg KA; Agard DA
    J Biol Chem; 2008 Jul; 283(30):21170-8. PubMed ID: 18492664
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cross-monomer substrate contacts reposition the Hsp90 N-terminal domain and prime the chaperone activity.
    Street TO; Lavery LA; Verba KA; Lee CT; Mayer MP; Agard DA
    J Mol Biol; 2012 Jan; 415(1):3-15. PubMed ID: 22063096
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The ATPase cycle of the mitochondrial Hsp90 analog Trap1.
    Leskovar A; Wegele H; Werbeck ND; Buchner J; Reinstein J
    J Biol Chem; 2008 Apr; 283(17):11677-88. PubMed ID: 18287101
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conserved conformational changes in the ATPase cycle of human Hsp90.
    Richter K; Soroka J; Skalniak L; Leskovar A; Hessling M; Reinstein J; Buchner J
    J Biol Chem; 2008 Jun; 283(26):17757-65. PubMed ID: 18400751
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stimulation of the weak ATPase activity of human hsp90 by a client protein.
    McLaughlin SH; Smith HW; Jackson SE
    J Mol Biol; 2002 Jan; 315(4):787-98. PubMed ID: 11812147
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural and functional analysis of the middle segment of hsp90: implications for ATP hydrolysis and client protein and cochaperone interactions.
    Meyer P; Prodromou C; Hu B; Vaughan C; Roe SM; Panaretou B; Piper PW; Pearl LH
    Mol Cell; 2003 Mar; 11(3):647-58. PubMed ID: 12667448
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.