These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 24462871)
1. Crystal structure and biochemical characterization of beta-keto thiolase B from polyhydroxyalkanoate-producing bacterium Ralstonia eutropha H16. Kim EJ; Son HF; Kim S; Ahn JW; Kim KJ Biochem Biophys Res Commun; 2014 Feb; 444(3):365-9. PubMed ID: 24462871 [TBL] [Abstract][Full Text] [Related]
2. Crystal structure and biochemical characterization of PhaA from Ralstonia eutropha, a polyhydroxyalkanoate-producing bacterium. Kim EJ; Kim KJ Biochem Biophys Res Commun; 2014 Sep; 452(1):124-9. PubMed ID: 25152395 [TBL] [Abstract][Full Text] [Related]
3. Crystal structure and biochemical properties of ReH16_A1887, the 3-ketoacyl-CoA thiolase from Ralstonia eutropha H16. Kim J; Kim KJ Biochem Biophys Res Commun; 2015 Apr; 459(3):547-52. PubMed ID: 25749345 [TBL] [Abstract][Full Text] [Related]
4. Cloning, expression, purification, crystallization and X-ray crystallographic analysis of β-ketothiolase B from Ralstonia eutropha H16. Kim EJ; Son HF; Chang JH; Kim KJ Acta Crystallogr F Struct Biol Commun; 2014 Mar; 70(Pt 3):316-9. PubMed ID: 24598917 [TBL] [Abstract][Full Text] [Related]
5. Crystal structure of (R)-3-hydroxybutyryl-CoA dehydrogenase PhaB from Ralstonia eutropha. Kim J; Chang JH; Kim EJ; Kim KJ Biochem Biophys Res Commun; 2014 Jan; 443(3):783-8. PubMed ID: 24211201 [TBL] [Abstract][Full Text] [Related]
6. The 1.8 A crystal structure of the dimeric peroxisomal 3-ketoacyl-CoA thiolase of Saccharomyces cerevisiae: implications for substrate binding and reaction mechanism. Mathieu M; Modis Y; Zeelen JP; Engel CK; Abagyan RA; Ahlberg A; Rasmussen B; Lamzin VS; Kunau WH; Wierenga RK J Mol Biol; 1997 Oct; 273(3):714-28. PubMed ID: 9402066 [TBL] [Abstract][Full Text] [Related]
7. Crystal structure and biochemical characterization of a 3-ketoacyl-CoA thiolase from Ralstoniaeutropha H16. Kim J; Kim KJ Int J Biol Macromol; 2016 Jan; 82():425-31. PubMed ID: 26499087 [TBL] [Abstract][Full Text] [Related]
8. Crystal structure and biochemical properties of the (S)-3-hydroxybutyryl-CoA dehydrogenase PaaH1 from Ralstonia eutropha. Kim J; Chang JH; Kim KJ Biochem Biophys Res Commun; 2014 May; 448(2):163-8. PubMed ID: 24792376 [TBL] [Abstract][Full Text] [Related]
9. Purification, crystallization and preliminary X-ray diffraction analysis of 3-ketoacyl-CoA thiolase A1887 from Ralstonia eutropha H16. Kim J; Kim KJ Acta Crystallogr F Struct Biol Commun; 2015 Jun; 71(Pt 6):758-62. PubMed ID: 26057808 [TBL] [Abstract][Full Text] [Related]
10. The sulfur atoms of the substrate CoA and the catalytic cysteine are required for a productive mode of substrate binding in bacterial biosynthetic thiolase, a thioester-dependent enzyme. Meriläinen G; Schmitz W; Wierenga RK; Kursula P FEBS J; 2008 Dec; 275(24):6136-48. PubMed ID: 19016856 [TBL] [Abstract][Full Text] [Related]
11. A propionate CoA-transferase of Ralstonia eutropha H16 with broad substrate specificity catalyzing the CoA thioester formation of various carboxylic acids. Lindenkamp N; Schürmann M; Steinbüchel A Appl Microbiol Biotechnol; 2013 Sep; 97(17):7699-709. PubMed ID: 23250223 [TBL] [Abstract][Full Text] [Related]
12. Two NADH-dependent (S)-3-hydroxyacyl-CoA dehydrogenases from polyhydroxyalkanoate-producing Ralstonia eutropha. Segawa M; Wen C; Orita I; Nakamura S; Fukui T J Biosci Bioeng; 2019 Mar; 127(3):294-300. PubMed ID: 30243533 [TBL] [Abstract][Full Text] [Related]
13. Crystallographic analysis of the reaction pathway of Zoogloea ramigera biosynthetic thiolase. Modis Y; Wierenga RK J Mol Biol; 2000 Apr; 297(5):1171-82. PubMed ID: 10764581 [TBL] [Abstract][Full Text] [Related]
14. Characterization of propionate CoA-transferase from Ralstonia eutropha H16. Volodina E; Schürmann M; Lindenkamp N; Steinbüchel A Appl Microbiol Biotechnol; 2014 Apr; 98(8):3579-89. PubMed ID: 24057402 [TBL] [Abstract][Full Text] [Related]
15. The crystal structure of human mitochondrial 3-ketoacyl-CoA thiolase (T1): insight into the reaction mechanism of its thiolase and thioesterase activities. Kiema TR; Harijan RK; Strozyk M; Fukao T; Alexson SE; Wierenga RK Acta Crystallogr D Biol Crystallogr; 2014 Dec; 70(Pt 12):3212-25. PubMed ID: 25478839 [TBL] [Abstract][Full Text] [Related]
16. Occurrence and expression of tricarboxylate synthases in Ralstonia eutropha. Ewering C; Brämer CO; Bruland N; Bethke A; Steinbüchel A Appl Microbiol Biotechnol; 2006 Jun; 71(1):80-9. PubMed ID: 16133321 [TBL] [Abstract][Full Text] [Related]
17. Structural characterization of a mitochondrial 3-ketoacyl-CoA (T1)-like thiolase from Mycobacterium smegmatis. Janardan N; Harijan RK; Kiema TR; Wierenga RK; Murthy MR Acta Crystallogr D Biol Crystallogr; 2015 Dec; 71(Pt 12):2479-93. PubMed ID: 26627655 [TBL] [Abstract][Full Text] [Related]
19. Histidine-450 is the catalytic residue of L-3-hydroxyacyl coenzyme A dehydrogenase associated with the large alpha-subunit of the multienzyme complex of fatty acid oxidation from Escherichia coli. He XY; Yang SY Biochemistry; 1996 Jul; 35(29):9625-30. PubMed ID: 8755745 [TBL] [Abstract][Full Text] [Related]
20. [Dynamics of activity of the key enzymes of polyhydroxyalkanoate metabolism in Ralstonia eutropha]. Volova TG; Kalacheva GS; Gorbunova OV; Zhila NO Prikl Biokhim Mikrobiol; 2004; 40(2):201-9. PubMed ID: 15125198 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]