BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 24463097)

  • 1. Fabrication and evaluation of the novel reduction-sensitive starch nanoparticles for controlled drug release.
    Yang J; Huang Y; Gao C; Liu M; Zhang X
    Colloids Surf B Biointerfaces; 2014 Mar; 115():368-76. PubMed ID: 24463097
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Redox/pH dual stimuli-responsive biodegradable nanohydrogels with varying responses to dithiothreitol and glutathione for controlled drug release.
    Pan YJ; Chen YY; Wang DR; Wei C; Guo J; Lu DR; Chu CC; Wang CC
    Biomaterials; 2012 Sep; 33(27):6570-9. PubMed ID: 22704845
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preparation of starch nanoparticles in water in oil microemulsion system and their drug delivery properties.
    Wang X; Chen H; Luo Z; Fu X
    Carbohydr Polym; 2016 Mar; 138():192-200. PubMed ID: 26794752
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation of starch nanoparticles in a water-in-ionic liquid microemulsion system and their drug loading and releasing properties.
    Zhou G; Luo Z; Fu X
    J Agric Food Chem; 2014 Aug; 62(32):8214-20. PubMed ID: 25069988
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultra-small and innocuous cationic starch nanospheres: preparation, characterization and drug delivery study.
    Huang Y; Liu M; Gao C; Yang J; Zhang X; Zhang X; Liu Z
    Int J Biol Macromol; 2013 Jul; 58():231-9. PubMed ID: 23587995
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis of temperature, pH, light and dual-redox quintuple-stimuli-responsive shell-crosslinked polymeric nanoparticles for controlled release.
    Zhang K; Liu J; Guo Y; Li Y; Ma X; Lei Z
    Mater Sci Eng C Mater Biol Appl; 2018 Jun; 87():1-9. PubMed ID: 29549937
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cellular uptake, intracellular trafficking, and antitumor efficacy of doxorubicin-loaded reduction-sensitive micelles.
    Cui C; Xue YN; Wu M; Zhang Y; Yu P; Liu L; Zhuo RX; Huang SW
    Biomaterials; 2013 May; 34(15):3858-69. PubMed ID: 23452389
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis, characterization, release kinetics and toxicity profile of drug-loaded starch nanoparticles.
    El-Naggar ME; El-Rafie MH; El-sheikh MA; El-Feky GS; Hebeish A
    Int J Biol Macromol; 2015 Nov; 81():718-29. PubMed ID: 26358550
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design of pH-responsive nanoparticles of terpolymer of poly(methacrylic acid), polysorbate 80 and starch for delivery of doxorubicin.
    Shalviri A; Chan HK; Raval G; Abdekhodaie MJ; Liu Q; Heerklotz H; Wu XY
    Colloids Surf B Biointerfaces; 2013 Jan; 101():405-13. PubMed ID: 23010048
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of disulfide core-crosslinked pluronic nanoparticles as an effective anticancer-drug-delivery system.
    Abdullah-Al-Nahain ; Lee H; Lee YS; Lee KD; Park SY
    Macromol Biosci; 2011 Sep; 11(9):1264-71. PubMed ID: 21717576
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis and in vitro evaluation of carboxymethyl starch-chitosan nanoparticles as drug delivery system to the colon.
    Saboktakin MR; Tabatabaie RM; Maharramov A; Ramazanov MA
    Int J Biol Macromol; 2011 Apr; 48(3):381-5. PubMed ID: 20955728
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reduction and pH dual-bioresponsive crosslinked polymersomes for efficient intracellular delivery of proteins and potent induction of cancer cell apoptosis.
    Sun H; Meng F; Cheng R; Deng C; Zhong Z
    Acta Biomater; 2014 May; 10(5):2159-68. PubMed ID: 24440420
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intracellular release of doxorubicin from core-crosslinked polypeptide micelles triggered by both pH and reduction conditions.
    Wu L; Zou Y; Deng C; Cheng R; Meng F; Zhong Z
    Biomaterials; 2013 Jul; 34(21):5262-72. PubMed ID: 23570719
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication of biodegradable micelles with reduction-triggered release of 6-mercaptopurine profile based on disulfide-linked graft copolymer conjugate.
    Zhang X; Du F; Huang J; Lu W; Liu S; Yu J
    Colloids Surf B Biointerfaces; 2012 Dec; 100():155-62. PubMed ID: 22766292
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanoparticles of lipid monolayer shell and biodegradable polymer core for controlled release of paclitaxel: effects of surfactants on particles size, characteristics and in vitro performance.
    Liu Y; Pan J; Feng SS
    Int J Pharm; 2010 Aug; 395(1-2):243-50. PubMed ID: 20472049
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis and in vitro release study of ibuprofen-loaded gelatin graft copolymer nanoparticles.
    Haroun AA; El-Halawany NR; Loira-Pastoriza C; Maincent P
    Drug Dev Ind Pharm; 2014 Jan; 40(1):61-5. PubMed ID: 23244199
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrophobic grafted and cross-linked starch nanoparticles for drug delivery.
    Simi CK; Emilia Abraham T
    Bioprocess Biosyst Eng; 2007 May; 30(3):173-80. PubMed ID: 17278045
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface functionalization of PLGA nanoparticles by non-covalent insertion of a homo-bifunctional spacer for active targeting in cancer therapy.
    Thamake SI; Raut SL; Ranjan AP; Gryczynski Z; Vishwanatha JK
    Nanotechnology; 2011 Jan; 22(3):035101. PubMed ID: 21149963
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Facile preparation of pH-sensitive micelles self-assembled from amphiphilic chondroitin sulfate-histamine conjugate for triggered intracellular drug release.
    Yu C; Gao C; Lü S; Chen C; Yang J; Di X; Liu M
    Colloids Surf B Biointerfaces; 2014 Mar; 115():331-9. PubMed ID: 24398081
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temperature sensitive contact lenses for triggered ophthalmic drug delivery.
    Jung HJ; Chauhan A
    Biomaterials; 2012 Mar; 33(7):2289-300. PubMed ID: 22182750
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.