These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 24463104)

  • 1. Effect of different stapes prostheses on the passive vibration of the basilar membrane.
    Kwacz M; Marek P; Borkowski P; Gambin W
    Hear Res; 2014 Apr; 310():13-26. PubMed ID: 24463104
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A three-dimensional finite element model of round window membrane vibration before and after stapedotomy surgery.
    Kwacz M; Marek P; Borkowski P; Mrówka M
    Biomech Model Mechanobiol; 2013 Nov; 12(6):1243-61. PubMed ID: 23462937
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of rocking stapes motions on the cochlear fluid flow and on the basilar membrane motion.
    Edom E; Obrist D; Henniger R; Kleiser L; Sim JH; Huber AM
    J Acoust Soc Am; 2013 Nov; 134(5):3749-58. PubMed ID: 24180785
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Finite element model of the stapes-inner ear interface.
    Böhnke F; Arnold W
    Adv Otorhinolaryngol; 2007; 65():150-154. PubMed ID: 17245037
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of a perilymphatic fistula on the passive vibration response of the basilar membrane.
    Koike T; Sakamoto C; Sakashita T; Hayashi K; Kanzaki S; Ogawa K
    Hear Res; 2012 Jan; 283(1-2):117-25. PubMed ID: 22115725
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biocompatible membrane of PDMS for the new chamber prosthesis stapes.
    Banasik K; Kwacz M
    Otolaryngol Pol; 2016 Jun; 70(4):29-40. PubMed ID: 27387215
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differences in the perilymph fluid stimulation before and after experimental stapedotomy.
    Kwacz M; Mrówka M; Wysocki J
    Acta Bioeng Biomech; 2012; 14(2):67-73. PubMed ID: 22793978
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of basilar-membrane lesions on dynamic responses of the middle ear.
    Liang J; Xie W; Yao W; Duan M
    Acta Otolaryngol; 2023 Apr; 143(4):255-261. PubMed ID: 36939118
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Basilar membrane vibrations near the round window of the gerbil cochlea.
    Overstreet EH; Temchin AN; Ruggero MA
    J Assoc Res Otolaryngol; 2002 Sep; 3(3):351-61. PubMed ID: 12382108
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of a direct acoustic cochlear stimulator.
    Chatzimichalis M; Sim JH; Huber AM
    Audiol Neurootol; 2012; 17(5):299-308. PubMed ID: 22739432
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comprehensive model of human ear for analysis of implantable hearing devices.
    Zhang X; Gan RZ
    IEEE Trans Biomed Eng; 2011 Oct; 58(10):3024-7. PubMed ID: 21708496
    [TBL] [Abstract][Full Text] [Related]  

  • 12. How does prosthesis head size affect vibration transmission in ossiculoplasty?
    Bance M; Campos A; Wong L; Morris DP; van Wijhe R
    Otolaryngol Head Neck Surg; 2007 Jul; 137(1):70-3. PubMed ID: 17599568
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New chamber stapes prosthesis - A preliminary assessment of the functioning of the prototype.
    Kwacz M; Sołyga M; Mrówka M; Kamieniecki K
    PLoS One; 2017; 12(5):e0178133. PubMed ID: 28542633
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of round-window membrane mechanics before and after experimental stapedotomy.
    Wysocki J; Kwacz M; Mrówka M; Skarżyński H
    Laryngoscope; 2011 Sep; 121(9):1958-64. PubMed ID: 22024852
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fast reverse propagation of sound in the living cochlea.
    He W; Fridberger A; Porsov E; Ren T
    Biophys J; 2010 Jun; 98(11):2497-505. PubMed ID: 20513393
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effects of complex stapes motion on the response of the cochlea.
    Huber AM; Sequeira D; Breuninger C; Eiber A
    Otol Neurotol; 2008 Dec; 29(8):1187-92. PubMed ID: 18580545
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bone conduction stimulation of the otic capsule: a finite element model of the temporal bone.
    Borkowski P; Marek P; Niemczyk K; Lachowska M; Kwacz M; Wysocki J
    Acta Bioeng Biomech; 2019; 21(3):75-86. PubMed ID: 31798024
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [A mechanical simulation model of the basilar membrane of the cochlea].
    Miao J; Xiao Z; Zhou L
    Nan Fang Yi Ke Da Xue Xue Bao; 2014 Jan; 34(1):79-83. PubMed ID: 24463122
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of prosthesis design on vibration of the reconstructed ossicular chain: a comparative finite element analysis of four prostheses.
    Kelly DJ; Prendergast PJ; Blayney AW
    Otol Neurotol; 2003 Jan; 24(1):11-9. PubMed ID: 12544021
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A simple electrical lumped-element model simulates intra-cochlear sound pressures and cochlear impedance below 2 kHz.
    Marquardt T; Hensel J
    J Acoust Soc Am; 2013 Nov; 134(5):3730-8. PubMed ID: 24180783
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.