BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 24463192)

  • 1. A study of the native cell wall structures of the marine alga Ventricaria ventricosa (Siphonocladales, Chlorophyceae) using atomic force microscopy.
    Eslick EM; Beilby MJ; Moon AR
    Microscopy (Oxf); 2014 Apr; 63(2):131-40. PubMed ID: 24463192
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatial organization of cellulose microfibrils and matrix polysaccharides in primary plant cell walls as imaged by multichannel atomic force microscopy.
    Zhang T; Zheng Y; Cosgrove DJ
    Plant J; 2016 Jan; 85(2):179-92. PubMed ID: 26676644
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fibrous matrix component of cell wall in the giant-celled green alga Valonia utricularis observed by atomic force microscopy in liquid.
    Mine I; Sekida S
    Protoplasma; 2018 Sep; 255(5):1575-1579. PubMed ID: 29675564
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pectins influence microfibril aggregation in celery cell walls: An atomic force microscopy study.
    Thimm JC; Burritt DJ; Ducker WA; Melton LD
    J Struct Biol; 2009 Nov; 168(2):337-44. PubMed ID: 19567269
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Texture of cellulose microfibrils of root hair cell walls of Arabidopsis thaliana, Medicago truncatula, and Vicia sativa.
    Akkerman M; Franssen-Verheijen MA; Immerzeel P; Hollander LD; Schel JH; Emons AM
    J Microsc; 2012 Jul; 247(1):60-7. PubMed ID: 22458271
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The maize primary cell wall microfibril: a new model derived from direct visualization.
    Ding SY; Himmel ME
    J Agric Food Chem; 2006 Feb; 54(3):597-606. PubMed ID: 16448156
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct visualization of straw cell walls by AFM.
    Yan L; Li W; Yang J; Zhu Q
    Macromol Biosci; 2004 Feb; 4(2):112-8. PubMed ID: 15468201
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Celery (Apium graveolens L.) parenchyma cell walls examined by atomic force microscopy: effect of dehydration on cellulose microfibrils.
    Thimm JC; Burritt DJ; Ducker WA; Melton LD
    Planta; 2000 Dec; 212(1):25-32. PubMed ID: 11219580
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanoscale movements of cellulose microfibrils in primary cell walls.
    Zhang T; Vavylonis D; Durachko DM; Cosgrove DJ
    Nat Plants; 2017 Apr; 3():17056. PubMed ID: 28452988
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cell wall extension results in the coordinate separation of parallel microfibrils: evidence from scanning electron microscopy and atomic force microscopy.
    Marga F; Grandbois M; Cosgrove DJ; Baskin TI
    Plant J; 2005 Jul; 43(2):181-90. PubMed ID: 15998305
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Atomic force microscopy of plant cell walls.
    Kirby AR
    Methods Mol Biol; 2011; 715():169-78. PubMed ID: 21222084
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural Insight into Cell Wall Architecture of Micanthus sinensis cv. using Correlative Microscopy Approaches.
    Ma J; Lv X; Yang S; Tian G; Liu X
    Microsc Microanal; 2015 Oct; 21(5):1304-13. PubMed ID: 26358178
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The relation of apple texture with cell wall nanostructure studied using an atomic force microscope.
    Cybulska J; Zdunek A; Psonka-Antonczyk KM; Stokke BT
    Carbohydr Polym; 2013 Jan; 92(1):128-37. PubMed ID: 23218275
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fine structure of cell wall surfaces in the giant-cellular xanthophycean alga Vaucheria terrestris.
    Mine I; Okuda K
    Planta; 2007 Apr; 225(5):1135-46. PubMed ID: 17106686
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Disentangling loosening from softening: insights into primary cell wall structure.
    Zhang T; Tang H; Vavylonis D; Cosgrove DJ
    Plant J; 2019 Dec; 100(6):1101-1117. PubMed ID: 31469935
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct visualization of the enzymatic digestion of a single fiber of native cellulose in an aqueous environment by atomic force microscopy.
    Quirk A; Lipkowski J; Vandenende C; Cockburn D; Clarke AJ; Dutcher JR; Roscoe SG
    Langmuir; 2010 Apr; 26(7):5007-13. PubMed ID: 20170174
    [TBL] [Abstract][Full Text] [Related]  

  • 17. When is a cell not a cell? A theory relating coenocytic structure to the unusual electrophysiology of Ventricaria ventricosa (Valonia ventricosa).
    Shepherd VA; Beilby MJ; Bisson MA
    Protoplasma; 2004 Jun; 223(2-4):79-91. PubMed ID: 15221513
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface architecture of the plant cell: biogenesis of the cell wall, with special emphasis on the role of the plasma membrane in cellulose biosynthesis.
    Montezinos D; Brown M
    J Supramol Struct; 1976; 5(3):277-90. PubMed ID: 1024121
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanoscale structure, mechanics and growth of epidermal cell walls.
    Cosgrove DJ
    Curr Opin Plant Biol; 2018 Dec; 46():77-86. PubMed ID: 30142487
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Membrane-wall attachments in plasmolysed plant cells.
    Lang I; Barton DA; Overall RL
    Protoplasma; 2004 Dec; 224(3-4):231-43. PubMed ID: 15614484
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.