These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 24463192)

  • 41. Towards a nanoscale view of fungal surfaces.
    Dague E; Gilbert Y; Verbelen C; Andre G; Alsteens D; Dufrêne YF
    Yeast; 2007 Apr; 24(4):229-37. PubMed ID: 17230582
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Visualization of cellobiohydrolase I from Trichoderma reesei moving on crystalline cellulose using high-speed atomic force microscopy.
    Igarashi K; Uchihashi T; Koivula A; Wada M; Kimura S; Penttilä M; Ando T; Samejima M
    Methods Enzymol; 2012; 510():169-82. PubMed ID: 22608726
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Resonant soft X-ray scattering reveals cellulose microfibril spacing in plant primary cell walls.
    Ye D; Kiemle SN; Rongpipi S; Wang X; Wang C; Cosgrove DJ; Gomez EW; Gomez ED
    Sci Rep; 2018 Aug; 8(1):12449. PubMed ID: 30127533
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Changes in the structural properties and rate of hydrolysis of cotton fibers during extended enzymatic hydrolysis.
    Wang L; Zhang Y; Gao P; Shi D; Liu H; Gao H
    Biotechnol Bioeng; 2006 Feb; 93(3):443-56. PubMed ID: 16196052
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Contributions of the mechanical properties of major structural polysaccharides to the stiffness of a cell wall network model.
    Yi H; Puri VM
    Am J Bot; 2014 Feb; 101(2):244-54. PubMed ID: 24491345
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Cell wall modification in grapevine cells in response to UV stress investigated by atomic force microscopy.
    Lesniewska E; Adrian M; Klinguer A; Pugin A
    Ultramicroscopy; 2004 Aug; 100(3-4):171-8. PubMed ID: 15231307
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Origin of chiral interactions in cellulose supra-molecular microfibrils.
    Khandelwal M; Windle A
    Carbohydr Polym; 2014 Jun; 106():128-31. PubMed ID: 24721059
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Organization of pectic arabinan and galactan side chains in association with cellulose microfibrils in primary cell walls and related models envisaged.
    Zykwinska A; Thibault JF; Ralet MC
    J Exp Bot; 2007; 58(7):1795-802. PubMed ID: 17383990
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Cellulose metabolism in plants.
    Hayashi T; Yoshida K; Park YW; Konishi T; Baba K
    Int Rev Cytol; 2005; 247():1-34. PubMed ID: 16344110
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Elastic modulus of single cellulose microfibrils from tunicate measured by atomic force microscopy.
    Iwamoto S; Kai W; Isogai A; Iwata T
    Biomacromolecules; 2009 Sep; 10(9):2571-6. PubMed ID: 19645441
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Revealing the Architecture of the Cell Wall in Living Plant Cells by Bioimaging and Enzymatic Degradation.
    Yilmaz N; Kodama Y; Numata K
    Biomacromolecules; 2020 Jan; 21(1):95-103. PubMed ID: 31496226
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Molecular directionality in cellulose polymorphs.
    Kim NH; Imai T; Wada M; Sugiyama J
    Biomacromolecules; 2006 Jan; 7(1):274-80. PubMed ID: 16398525
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Dynamic force microscopy imaging of native membranes.
    Kienberger F; Stroh C; Kada G; Moser R; Baumgartner W; Pastushenko V; Rankl C; Schmidt U; Müller H; Orlova E; LeGrimellec C; Drenckhahn D; Blaas D; Hinterdorfer P
    Ultramicroscopy; 2003; 97(1-4):229-37. PubMed ID: 12801675
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Imaging and measuring single-molecule interaction between a carbohydrate-binding module and natural plant cell wall cellulose.
    Zhang M; Wu SC; Zhou W; Xu B
    J Phys Chem B; 2012 Aug; 116(33):9949-56. PubMed ID: 22849362
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Pore and matrix distribution in the fiber wall revealed by atomic force microscopy and image analysis.
    Fahlén J; Salmén L
    Biomacromolecules; 2005; 6(1):433-8. PubMed ID: 15638549
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Probing crystal structure and mesoscale assembly of cellulose microfibrils in plant cell walls, tunicate tests, and bacterial films using vibrational sum frequency generation (SFG) spectroscopy.
    Lee CM; Kafle K; Park YB; Kim SH
    Phys Chem Chem Phys; 2014 Jun; 16(22):10844-53. PubMed ID: 24760365
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Microtubule and cellulose microfibril orientation during plant cell and organ growth.
    Chan J
    J Microsc; 2012 Jul; 247(1):23-32. PubMed ID: 22171640
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Plant micro- and nanomechanics: experimental techniques for plant cell-wall analysis.
    Burgert I; Keplinger T
    J Exp Bot; 2013 Nov; 64(15):4635-49. PubMed ID: 24064925
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Assembly and enlargement of the primary cell wall in plants.
    Cosgrove DJ
    Annu Rev Cell Dev Biol; 1997; 13():171-201. PubMed ID: 9442872
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Structure and dynamics of Brachypodium primary cell wall polysaccharides from two-dimensional (13)C solid-state nuclear magnetic resonance spectroscopy.
    Wang T; Salazar A; Zabotina OA; Hong M
    Biochemistry; 2014 May; 53(17):2840-54. PubMed ID: 24720372
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.