These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 24463343)
1. Mercury-supported biomimetic membranes for the investigation of antimicrobial peptides. Becucci L; Guidelli R Pharmaceuticals (Basel); 2014 Jan; 7(2):136-68. PubMed ID: 24463343 [TBL] [Abstract][Full Text] [Related]
2. What Ion Flow along Ion Channels Can Tell us about Their Functional Activity. Becucci L; Guidelli R Membranes (Basel); 2016 Dec; 6(4):. PubMed ID: 27983579 [TBL] [Abstract][Full Text] [Related]
3. On the interaction of the highly charged peptides casocidins with biomimetic membranes. Becucci L; Aloisi G; Scaloni A; Caira S; Guidelli R Bioelectrochemistry; 2018 Oct; 123():1-8. PubMed ID: 29715585 [TBL] [Abstract][Full Text] [Related]
4. Probing membrane permeabilization by the antimicrobial peptide distinctin in mercury-supported biomimetic membranes. Becucci L; Papini M; Mullen D; Scaloni A; Veglia G; Guidelli R Biochim Biophys Acta; 2011 Nov; 1808(11):2745-52. PubMed ID: 21824466 [TBL] [Abstract][Full Text] [Related]
5. The effect of the hydrophilic spacer length on the functionality of a mercury-supported tethered bilayer lipid membrane. Becucci L; Faragher RJ; Schwan A Bioelectrochemistry; 2015 Feb; 101():92-6. PubMed ID: 25180906 [TBL] [Abstract][Full Text] [Related]
7. Channel-forming activity of syringomycin E in two mercury-supported biomimetic membranes. Becucci L; Tramonti V; Fiore A; Fogliano V; Scaloni A; Guidelli R Biochim Biophys Acta; 2015 Apr; 1848(4):932-41. PubMed ID: 25554594 [TBL] [Abstract][Full Text] [Related]
8. Electrochemical Impedance Spectroscopy as a Convenient Tool to Characterize Tethered Bilayer Membranes. Penkauskas T; Ambrulevičius F; Valinčius G Methods Mol Biol; 2022; 2402():31-59. PubMed ID: 34854034 [TBL] [Abstract][Full Text] [Related]
9. Synthesis and characterization of tethered lipid assemblies for membrane protein reconstitution (Review). Veneziano R; Rossi C; Chenal A; Brenner C; Ladant D; Chopineau J Biointerphases; 2017 Sep; 12(4):04E301. PubMed ID: 28958150 [TBL] [Abstract][Full Text] [Related]
10. Potassium ion transport by valinomycin across a Hg-supported lipid bilayer. Becucci L; Moncelli MR; Naumann R; Guidelli R J Am Chem Soc; 2005 Sep; 127(38):13316-23. PubMed ID: 16173764 [TBL] [Abstract][Full Text] [Related]
11. Channel-forming activity of syringopeptin 25A in mercury-supported lipid bilayers with a phosphatidylcholine distal leaflet. Becucci L; Rossi M; Fiore A; Scaloni A; Guidelli R Bioelectrochemistry; 2016 Apr; 108():28-35. PubMed ID: 26680109 [TBL] [Abstract][Full Text] [Related]
12. Formation and finite element analysis of tethered bilayer lipid structures. Kwak KJ; Valincius G; Liao WC; Hu X; Wen X; Lee A; Yu B; Vanderah DJ; Lu W; Lee LJ Langmuir; 2010 Dec; 26(23):18199-208. PubMed ID: 20977245 [TBL] [Abstract][Full Text] [Related]
13. The assembly and use of tethered bilayer lipid membranes (tBLMs). Cranfield C; Carne S; Martinac B; Cornell B Methods Mol Biol; 2015; 1232():45-53. PubMed ID: 25331126 [TBL] [Abstract][Full Text] [Related]
15. Langmuir-Schaefer Deposition to Create an Asymmetrical Lipopolysaccharide Sparsely Tethered Lipid Bilayer. Cranfield CG; Le Brun AP; Garcia A; Cornell BA; Holt SA Methods Mol Biol; 2022; 2402():21-30. PubMed ID: 34854033 [TBL] [Abstract][Full Text] [Related]
16. The Impact of an Anchoring Layer on the Formation of Tethered Bilayer Lipid Membranes on Silver Substrates. Aleknavičienė I; Talaikis M; Budvytyte R; Valincius G Molecules; 2021 Nov; 26(22):. PubMed ID: 34833969 [TBL] [Abstract][Full Text] [Related]