These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

301 related articles for article (PubMed ID: 24463514)

  • 21. Carbon cycle. The dominant role of semi-arid ecosystems in the trend and variability of the land CO₂ sink.
    Ahlström A; Raupach MR; Schurgers G; Smith B; Arneth A; Jung M; Reichstein M; Canadell JG; Friedlingstein P; Jain AK; Kato E; Poulter B; Sitch S; Stocker BD; Viovy N; Wang YP; Wiltshire A; Zaehle S; Zeng N
    Science; 2015 May; 348(6237):895-9. PubMed ID: 25999504
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Regional atmospheric CO2 inversion reveals seasonal and geographic differences in Amazon net biome exchange.
    Alden CB; Miller JB; Gatti LV; Gloor MM; Guan K; Michalak AM; van der Laan-Luijkx IT; Touma D; Andrews A; Basso LS; Correia CS; Domingues LG; Joiner J; Krol MC; Lyapustin AI; Peters W; Shiga YP; Thoning K; van der Velde IR; van Leeuwen TT; Yadav V; Diffenbaugh NS
    Glob Chang Biol; 2016 Oct; 22(10):3427-43. PubMed ID: 27124119
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Reversed Holocene temperature-moisture relationship in the Horn of Africa.
    Baxter AJ; Verschuren D; Peterse F; Miralles DG; Martin-Jones CM; Maitituerdi A; Van der Meeren T; Van Daele M; Lane CS; Haug GH; Olago DO; Sinninghe Damsté JS
    Nature; 2023 Aug; 620(7973):336-343. PubMed ID: 37558848
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dominant regions and drivers of the variability of the global land carbon sink across timescales.
    Zhang X; Wang YP; Peng S; Rayner PJ; Ciais P; Silver JD; Piao S; Zhu Z; Lu X; Zheng X
    Glob Chang Biol; 2018 Sep; 24(9):3954-3968. PubMed ID: 29665215
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Large historical growth in global terrestrial gross primary production.
    Campbell JE; Berry JA; Seibt U; Smith SJ; Montzka SA; Launois T; Belviso S; Bopp L; Laine M
    Nature; 2017 Apr; 544(7648):84-87. PubMed ID: 28382993
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Compensatory water effects link yearly global land CO
    Jung M; Reichstein M; Schwalm CR; Huntingford C; Sitch S; Ahlström A; Arneth A; Camps-Valls G; Ciais P; Friedlingstein P; Gans F; Ichii K; Jain AK; Kato E; Papale D; Poulter B; Raduly B; Rödenbeck C; Tramontana G; Viovy N; Wang YP; Weber U; Zaehle S; Zeng N
    Nature; 2017 Jan; 541(7638):516-520. PubMed ID: 28092919
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Persistent near-tropical warmth on the Antarctic continent during the early Eocene epoch.
    Pross J; Contreras L; Bijl PK; Greenwood DR; Bohaty SM; Schouten S; Bendle JA; Röhl U; Tauxe L; Raine JI; Huck CE; van de Flierdt T; Jamieson SS; Stickley CE; van de Schootbrugge B; Escutia C; Brinkhuis H;
    Nature; 2012 Aug; 488(7409):73-7. PubMed ID: 22859204
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Improving predictions of tropical forest response to climate change through integration of field studies and ecosystem modeling.
    Feng X; Uriarte M; González G; Reed S; Thompson J; Zimmerman JK; Murphy L
    Glob Chang Biol; 2018 Jan; 24(1):e213-e232. PubMed ID: 28804989
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Urgent need for warming experiments in tropical forests.
    Cavaleri MA; Reed SC; Smith WK; Wood TE
    Glob Chang Biol; 2015 Jun; 21(6):2111-21. PubMed ID: 25641092
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Agricultural Green Revolution as a driver of increasing atmospheric CO2 seasonal amplitude.
    Zeng N; Zhao F; Collatz GJ; Kalnay E; Salawitch RJ; West TO; Guanter L
    Nature; 2014 Nov; 515(7527):394-7. PubMed ID: 25409829
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Interannual variability in the oxygen isotopes of atmospheric CO2 driven by El Niño.
    Welp LR; Keeling RF; Meijer HA; Bollenbacher AF; Piper SC; Yoshimura K; Francey RJ; Allison CE; Wahlen M
    Nature; 2011 Sep; 477(7366):579-82. PubMed ID: 21956330
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Asymmetric effects of daytime and night-time warming on Northern Hemisphere vegetation.
    Peng S; Piao S; Ciais P; Myneni RB; Chen A; Chevallier F; Dolman AJ; Janssens IA; Peñuelas J; Zhang G; Vicca S; Wan S; Wang S; Zeng H
    Nature; 2013 Sep; 501(7465):88-92. PubMed ID: 24005415
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Precipitation Mediates the Response of Carbon Cycle to Rising Temperature in the Mid-to-High Latitudes of the Northern Hemisphere.
    Lin X; Li J; Luo J; Wu X; Tian Y; Wang W
    PLoS One; 2015; 10(7):e0132663. PubMed ID: 26172277
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Climate-driven changes to the atmospheric CO2 sink in the subtropical North Pacific Ocean.
    Dore JE; Lukas R; Sadler DW; Karl DM
    Nature; 2003 Aug; 424(6950):754-7. PubMed ID: 12917678
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Warming reduces carbon losses from grassland exposed to elevated atmospheric carbon dioxide.
    Pendall E; Heisler-White JL; Williams DG; Dijkstra FA; Carrillo Y; Morgan JA; Lecain DR
    PLoS One; 2013; 8(8):e71921. PubMed ID: 23977180
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evaluation of terrestrial carbon cycle models for their response to climate variability and to CO2 trends.
    Piao S; Sitch S; Ciais P; Friedlingstein P; Peylin P; Wang X; Ahlström A; Anav A; Canadell JG; Cong N; Huntingford C; Jung M; Levis S; Levy PE; Li J; Lin X; Lomas MR; Lu M; Luo Y; Ma Y; Myneni RB; Poulter B; Sun Z; Wang T; Viovy N; Zaehle S; Zeng N
    Glob Chang Biol; 2013 Jul; 19(7):2117-32. PubMed ID: 23504870
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Long-term decline of the Amazon carbon sink.
    Brienen RJ; Phillips OL; Feldpausch TR; Gloor E; Baker TR; Lloyd J; Lopez-Gonzalez G; Monteagudo-Mendoza A; Malhi Y; Lewis SL; Vásquez Martinez R; Alexiades M; Álvarez Dávila E; Alvarez-Loayza P; Andrade A; Aragão LE; Araujo-Murakami A; Arets EJ; Arroyo L; Aymard C GA; Bánki OS; Baraloto C; Barroso J; Bonal D; Boot RG; Camargo JL; Castilho CV; Chama V; Chao KJ; Chave J; Comiskey JA; Cornejo Valverde F; da Costa L; de Oliveira EA; Di Fiore A; Erwin TL; Fauset S; Forsthofer M; Galbraith DR; Grahame ES; Groot N; Hérault B; Higuchi N; Honorio Coronado EN; Keeling H; Killeen TJ; Laurance WF; Laurance S; Licona J; Magnussen WE; Marimon BS; Marimon-Junior BH; Mendoza C; Neill DA; Nogueira EM; Núñez P; Pallqui Camacho NC; Parada A; Pardo-Molina G; Peacock J; Peña-Claros M; Pickavance GC; Pitman NC; Poorter L; Prieto A; Quesada CA; Ramírez F; Ramírez-Angulo H; Restrepo Z; Roopsind A; Rudas A; Salomão RP; Schwarz M; Silva N; Silva-Espejo JE; Silveira M; Stropp J; Talbot J; ter Steege H; Teran-Aguilar J; Terborgh J; Thomas-Caesar R; Toledo M; Torello-Raventos M; Umetsu RK; van der Heijden GM; van der Hout P; Guimarães Vieira IC; Vieira SA; Vilanova E; Vos VA; Zagt RJ
    Nature; 2015 Mar; 519(7543):344-8. PubMed ID: 25788097
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ecosystem carbon storage does not vary with mean annual temperature in Hawaiian tropical montane wet forests.
    Selmants PC; Litton CM; Giardina CP; Asner GP
    Glob Chang Biol; 2014 Sep; 20(9):2927-37. PubMed ID: 24838341
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Tropical forests and the global carbon cycle: impacts of atmospheric carbon dioxide, climate change and rate of deforestation.
    Cramer W; Bondeau A; Schaphoff S; Lucht W; Smith B; Sitch S
    Philos Trans R Soc Lond B Biol Sci; 2004 Mar; 359(1443):331-43. PubMed ID: 15212088
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Millennial-scale hydroclimate control of tropical soil carbon storage.
    Hein CJ; Usman M; Eglinton TI; Haghipour N; Galy VV
    Nature; 2020 May; 581(7806):63-66. PubMed ID: 32376961
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.