These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 24463710)
1. Effects of the preparation method and humic-acid modification on the mobility and contaminant-mobilizing capability of fullerene nanoparticles (nC60). Wang L; Hou L; Wang X; Chen W Environ Sci Process Impacts; 2014 May; 16(6):1282-9. PubMed ID: 24463710 [TBL] [Abstract][Full Text] [Related]
2. Complex interplay between formation routes and natural organic matter modification controls capabilities of C Hou L; Fortner JD; Wang X; Zhang C; Wang L; Chen W J Environ Sci (China); 2017 Jan; 51():315-323. PubMed ID: 28115144 [TBL] [Abstract][Full Text] [Related]
3. Enhanced transport of 2,2',5,5'-polychlorinated biphenyl by natural organic matter (NOM) and surfactant-modified fullerene nanoparticles (nC60). Wang L; Huang Y; Kan AT; Tomson MB; Chen W Environ Sci Technol; 2012 May; 46(10):5422-9. PubMed ID: 22500825 [TBL] [Abstract][Full Text] [Related]
4. Facilitated transport of 2,2',5,5'-polychlorinated biphenyl and phenanthrene by fullerene nanoparticles through sandy soil columns. Zhang L; Wang L; Zhang P; Kan AT; Chen W; Tomson MB Environ Sci Technol; 2011 Feb; 45(4):1341-8. PubMed ID: 21254786 [TBL] [Abstract][Full Text] [Related]
5. Contaminant-mobilizing capability of fullerene nanoparticles (nC60): Effect of solvent-exchange process in nC60 formation. Wang L; Fortner JD; Hou L; Zhang C; Kan AT; Tomson MB; Chen W Environ Toxicol Chem; 2013 Feb; 32(2):329-36. PubMed ID: 23172734 [TBL] [Abstract][Full Text] [Related]
6. Impact of natural organic matter on the physicochemical properties of aqueous C60 nanoparticles. Xie B; Xu Z; Guo W; Li Q Environ Sci Technol; 2008 Apr; 42(8):2853-9. PubMed ID: 18497134 [TBL] [Abstract][Full Text] [Related]
7. Transport and retention of fullerene nanoparticles in natural soils. Wang Y; Li Y; Kim H; Walker SL; Abriola LM; Pennell KD J Environ Qual; 2010; 39(6):1925-33. PubMed ID: 21284289 [TBL] [Abstract][Full Text] [Related]
8. Effects of humic and fulvic acids on aggregation of aqu/nC60 nanoparticles. Zhang W; Rattanaudompol US; Li H; Bouchard D Water Res; 2013 Apr; 47(5):1793-802. PubMed ID: 23374256 [TBL] [Abstract][Full Text] [Related]
9. Characterizing photochemical transformation of aqueous nC60 under environmentally relevant conditions. Hwang YS; Li Q Environ Sci Technol; 2010 Apr; 44(8):3008-13. PubMed ID: 20337472 [TBL] [Abstract][Full Text] [Related]
10. Transport of fullerene nanoparticles (nC60) in saturated sand and sandy soil: controlling factors and modeling. Zhang L; Hou L; Wang L; Kan AT; Chen W; Tomson MB Environ Sci Technol; 2012 Jul; 46(13):7230-8. PubMed ID: 22681192 [TBL] [Abstract][Full Text] [Related]
11. Effects of molecular weight-dependent physicochemical heterogeneity of natural organic matter on the aggregation of fullerene nanoparticles in mono- and di-valent electrolyte solutions. Shen MH; Yin YG; Booth A; Liu JF Water Res; 2015 Mar; 71():11-20. PubMed ID: 25577691 [TBL] [Abstract][Full Text] [Related]
12. Combined effects of aqueous suspensions of fullerene and humic acid on the availability of polycyclic aromatic hydrocarbons: evaluated with negligible depletion solid-phase microextraction. Hu X; Li J; Chen Q; Lin Z; Yin D Sci Total Environ; 2014 Sep; 493():12-21. PubMed ID: 24937488 [TBL] [Abstract][Full Text] [Related]
13. Effect of soil sorption and aquatic natural organic matter on the antibacterial activity of a fullerene water suspension. Li D; Lyon DY; Li Q; Alvarez PJ Environ Toxicol Chem; 2008 Sep; 27(9):1888-94. PubMed ID: 19086207 [TBL] [Abstract][Full Text] [Related]
14. The role of attached phase soil and sediment organic matter physicochemical properties on fullerene (nC60) attachment. McNew CP; LeBoeuf EJ Chemosphere; 2015 Nov; 139():609-16. PubMed ID: 25600319 [TBL] [Abstract][Full Text] [Related]
15. Enhanced mobility of fullerene (C60) nanoparticles in the presence of stabilizing agents. Wang Y; Li Y; Costanza J; Abriola LM; Pennell KD Environ Sci Technol; 2012 Nov; 46(21):11761-9. PubMed ID: 22973990 [TBL] [Abstract][Full Text] [Related]
16. Colloidal aggregation and structural assembly of aspect ratio variant goethite (α-FeOOH) with nC Ghosh S; Pradhan NR; Mashayekhi H; Zhang Q; Pan B; Xing B Environ Pollut; 2016 Dec; 219():1049-1059. PubMed ID: 27638456 [TBL] [Abstract][Full Text] [Related]
17. C60 colloid formation in aqueous systems: effects of preparation method on size, structure, and surface charge. Duncan LK; Jinschek JR; Vikesland PJ Environ Sci Technol; 2008 Jan; 42(1):173-8. PubMed ID: 18350893 [TBL] [Abstract][Full Text] [Related]
18. Binary short-range colloidal assembly of magnetic iron oxides nanoparticles and fullerene (nC60) in environmental media. Ghosh S; Pradhan NR; Mashayekhi H; Dickert S; Thantirige R; Tuominen MT; Tao S; Xing B Environ Sci Technol; 2014 Oct; 48(20):12285-91. PubMed ID: 25222921 [TBL] [Abstract][Full Text] [Related]
19. Detachment of fullerene nC60 nanoparticles in saturated porous media under flow/stop-flow conditions: Column experiments and mechanistic explanations. Wang Z; Wang D; Li B; Wang J; Li T; Zhang M; Huang Y; Shen C Environ Pollut; 2016 Jun; 213():698-709. PubMed ID: 27023279 [TBL] [Abstract][Full Text] [Related]
20. Aggregation and disaggregation of ZnO nanoparticles: influence of pH and adsorption of Suwannee River humic acid. Mohd Omar F; Abdul Aziz H; Stoll S Sci Total Environ; 2014 Jan; 468-469():195-201. PubMed ID: 24029691 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]