These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
227 related articles for article (PubMed ID: 24463735)
1. Metabolic profiles of prokaryotic and eukaryotic communities in deep-sea sponge Neamphius huxleyi [corrected]. indicated by metagenomics. Li ZY; Wang YZ; He LM; Zheng HJ Sci Rep; 2014 Jan; 4():3895. PubMed ID: 24463735 [TBL] [Abstract][Full Text] [Related]
2. Metagenomic Analysis of Genes Encoding Nutrient Cycling Pathways in the Microbiota of Deep-Sea and Shallow-Water Sponges. Li Z; Wang Y; Li J; Liu F; He L; He Y; Wang S Mar Biotechnol (NY); 2016 Dec; 18(6):659-671. PubMed ID: 27819120 [TBL] [Abstract][Full Text] [Related]
3. Corrigendum: Metabolic profiles of prokaryotic and eukaryotic communities in deep-sea sponge Neamphius huxleyi indicated by metagenomics. Li ZY; Wang YZ; He LM; Zheng HJ Sci Rep; 2015 Mar; 5():8176. PubMed ID: 25736200 [No Abstract] [Full Text] [Related]
4. Characterizing the microbiomes of Antarctic sponges: a functional metagenomic approach. Moreno-Pino M; Cristi A; Gillooly JF; Trefault N Sci Rep; 2020 Jan; 10(1):645. PubMed ID: 31959785 [TBL] [Abstract][Full Text] [Related]
5. The different potential of sponge bacterial symbionts in N₂ release indicated by the phylogenetic diversity and abundance analyses of denitrification genes, nirK and nosZ. Zhang X; He L; Zhang F; Sun W; Li Z PLoS One; 2013; 8(6):e65142. PubMed ID: 23762300 [TBL] [Abstract][Full Text] [Related]
6. Potential Interactions between Clade SUP05 Sulfur-Oxidizing Bacteria and Phages in Hydrothermal Vent Sponges. Zhou K; Zhang R; Sun J; Zhang W; Tian RM; Chen C; Kawagucci S; Xu Y Appl Environ Microbiol; 2019 Nov; 85(22):. PubMed ID: 31492669 [TBL] [Abstract][Full Text] [Related]
7. Functional equivalence and evolutionary convergence in complex communities of microbial sponge symbionts. Fan L; Reynolds D; Liu M; Stark M; Kjelleberg S; Webster NS; Thomas T Proc Natl Acad Sci U S A; 2012 Jul; 109(27):E1878-87. PubMed ID: 22699508 [TBL] [Abstract][Full Text] [Related]
8. Comparisons of the fungal and protistan communities among different marine sponge holobionts by pyrosequencing. He L; Liu F; Karuppiah V; Ren Y; Li Z Microb Ecol; 2014 May; 67(4):951-61. PubMed ID: 24577740 [TBL] [Abstract][Full Text] [Related]
9. Subcellular view of host-microbiome nutrient exchange in sponges: insights into the ecological success of an early metazoan-microbe symbiosis. Hudspith M; Rix L; Achlatis M; Bougoure J; Guagliardo P; Clode PL; Webster NS; Muyzer G; Pernice M; de Goeij JM Microbiome; 2021 Feb; 9(1):44. PubMed ID: 33583434 [TBL] [Abstract][Full Text] [Related]
10. Fueled by methane: deep-sea sponges from asphalt seeps gain their nutrition from methane-oxidizing symbionts. Rubin-Blum M; Antony CP; Sayavedra L; Martínez-Pérez C; Birgel D; Peckmann J; Wu YC; Cardenas P; MacDonald I; Marcon Y; Sahling H; Hentschel U; Dubilier N ISME J; 2019 May; 13(5):1209-1225. PubMed ID: 30647460 [TBL] [Abstract][Full Text] [Related]
11. High compositional and functional similarity in the microbiome of deep-sea sponges. Díez-Vives C; Riesgo A ISME J; 2024 Jan; 18(1):. PubMed ID: 38365260 [TBL] [Abstract][Full Text] [Related]
12. Analysis of functional gene transcripts suggests active CO2 assimilation and CO oxidation by diverse bacteria in marine sponges. Feng G; Zhang F; Banakar S; Karlep L; Li Z FEMS Microbiol Ecol; 2019 Jul; 95(7):. PubMed ID: 31187114 [TBL] [Abstract][Full Text] [Related]
13. Integrated metabolism in sponge-microbe symbiosis revealed by genome-centered metatranscriptomics. Moitinho-Silva L; Díez-Vives C; Batani G; Esteves AI; Jahn MT; Thomas T ISME J; 2017 Jul; 11(7):1651-1666. PubMed ID: 28338677 [TBL] [Abstract][Full Text] [Related]
14. Metaproteogenomic analysis of a community of sponge symbionts. Liu M; Fan L; Zhong L; Kjelleberg S; Thomas T ISME J; 2012 Aug; 6(8):1515-25. PubMed ID: 22297557 [TBL] [Abstract][Full Text] [Related]
15. Evolution and function of eukaryotic-like proteins from sponge symbionts. Reynolds D; Thomas T Mol Ecol; 2016 Oct; 25(20):5242-5253. PubMed ID: 27543954 [TBL] [Abstract][Full Text] [Related]
17. Comparative Genomics of Thaumarchaeota From Deep-Sea Sponges Reveal Their Niche Adaptation. Wang P; Li M; Dong L; Zhang C; Xie W Front Microbiol; 2022; 13():869834. PubMed ID: 35859738 [TBL] [Abstract][Full Text] [Related]
18. Comparative Metagenomic Analysis of Biosynthetic Diversity across Sponge Microbiomes Highlights Metabolic Novelty, Conservation, and Diversification. Loureiro C; Galani A; Gavriilidou A; Chaib de Mares M; van der Oost J; Medema MH; Sipkema D mSystems; 2022 Aug; 7(4):e0035722. PubMed ID: 35862823 [TBL] [Abstract][Full Text] [Related]
19. Metagenomic binning of a marine sponge microbiome reveals unity in defense but metabolic specialization. Slaby BM; Hackl T; Horn H; Bayer K; Hentschel U ISME J; 2017 Nov; 11(11):2465-2478. PubMed ID: 28696422 [TBL] [Abstract][Full Text] [Related]
20. The sponge holobiont in a changing ocean: from microbes to ecosystems. Pita L; Rix L; Slaby BM; Franke A; Hentschel U Microbiome; 2018 Mar; 6(1):46. PubMed ID: 29523192 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]