BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 24463735)

  • 1. Metabolic profiles of prokaryotic and eukaryotic communities in deep-sea sponge Neamphius huxleyi [corrected]. indicated by metagenomics.
    Li ZY; Wang YZ; He LM; Zheng HJ
    Sci Rep; 2014 Jan; 4():3895. PubMed ID: 24463735
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metagenomic Analysis of Genes Encoding Nutrient Cycling Pathways in the Microbiota of Deep-Sea and Shallow-Water Sponges.
    Li Z; Wang Y; Li J; Liu F; He L; He Y; Wang S
    Mar Biotechnol (NY); 2016 Dec; 18(6):659-671. PubMed ID: 27819120
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Corrigendum: Metabolic profiles of prokaryotic and eukaryotic communities in deep-sea sponge Neamphius huxleyi indicated by metagenomics.
    Li ZY; Wang YZ; He LM; Zheng HJ
    Sci Rep; 2015 Mar; 5():8176. PubMed ID: 25736200
    [No Abstract]   [Full Text] [Related]  

  • 4. Characterizing the microbiomes of Antarctic sponges: a functional metagenomic approach.
    Moreno-Pino M; Cristi A; Gillooly JF; Trefault N
    Sci Rep; 2020 Jan; 10(1):645. PubMed ID: 31959785
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The different potential of sponge bacterial symbionts in N₂ release indicated by the phylogenetic diversity and abundance analyses of denitrification genes, nirK and nosZ.
    Zhang X; He L; Zhang F; Sun W; Li Z
    PLoS One; 2013; 8(6):e65142. PubMed ID: 23762300
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Potential Interactions between Clade SUP05 Sulfur-Oxidizing Bacteria and Phages in Hydrothermal Vent Sponges.
    Zhou K; Zhang R; Sun J; Zhang W; Tian RM; Chen C; Kawagucci S; Xu Y
    Appl Environ Microbiol; 2019 Nov; 85(22):. PubMed ID: 31492669
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional equivalence and evolutionary convergence in complex communities of microbial sponge symbionts.
    Fan L; Reynolds D; Liu M; Stark M; Kjelleberg S; Webster NS; Thomas T
    Proc Natl Acad Sci U S A; 2012 Jul; 109(27):E1878-87. PubMed ID: 22699508
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fueled by methane: deep-sea sponges from asphalt seeps gain their nutrition from methane-oxidizing symbionts.
    Rubin-Blum M; Antony CP; Sayavedra L; Martínez-Pérez C; Birgel D; Peckmann J; Wu YC; Cardenas P; MacDonald I; Marcon Y; Sahling H; Hentschel U; Dubilier N
    ISME J; 2019 May; 13(5):1209-1225. PubMed ID: 30647460
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparisons of the fungal and protistan communities among different marine sponge holobionts by pyrosequencing.
    He L; Liu F; Karuppiah V; Ren Y; Li Z
    Microb Ecol; 2014 May; 67(4):951-61. PubMed ID: 24577740
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Subcellular view of host-microbiome nutrient exchange in sponges: insights into the ecological success of an early metazoan-microbe symbiosis.
    Hudspith M; Rix L; Achlatis M; Bougoure J; Guagliardo P; Clode PL; Webster NS; Muyzer G; Pernice M; de Goeij JM
    Microbiome; 2021 Feb; 9(1):44. PubMed ID: 33583434
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High compositional and functional similarity in the microbiome of deep-sea sponges.
    Díez-Vives C; Riesgo A
    ISME J; 2024 Jan; 18(1):. PubMed ID: 38365260
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of functional gene transcripts suggests active CO2 assimilation and CO oxidation by diverse bacteria in marine sponges.
    Feng G; Zhang F; Banakar S; Karlep L; Li Z
    FEMS Microbiol Ecol; 2019 Jul; 95(7):. PubMed ID: 31187114
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integrated metabolism in sponge-microbe symbiosis revealed by genome-centered metatranscriptomics.
    Moitinho-Silva L; Díez-Vives C; Batani G; Esteves AI; Jahn MT; Thomas T
    ISME J; 2017 Jul; 11(7):1651-1666. PubMed ID: 28338677
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metaproteogenomic analysis of a community of sponge symbionts.
    Liu M; Fan L; Zhong L; Kjelleberg S; Thomas T
    ISME J; 2012 Aug; 6(8):1515-25. PubMed ID: 22297557
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolution and function of eukaryotic-like proteins from sponge symbionts.
    Reynolds D; Thomas T
    Mol Ecol; 2016 Oct; 25(20):5242-5253. PubMed ID: 27543954
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metagenomic Exploration of the Marine Sponge
    Storey MA; Andreassend SK; Bracegirdle J; Brown A; Keyzers RA; Ackerley DF; Northcote PT; Owen JG
    mBio; 2020 Mar; 11(2):. PubMed ID: 32209692
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative Genomics of Thaumarchaeota From Deep-Sea Sponges Reveal Their Niche Adaptation.
    Wang P; Li M; Dong L; Zhang C; Xie W
    Front Microbiol; 2022; 13():869834. PubMed ID: 35859738
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative Metagenomic Analysis of Biosynthetic Diversity across Sponge Microbiomes Highlights Metabolic Novelty, Conservation, and Diversification.
    Loureiro C; Galani A; Gavriilidou A; Chaib de Mares M; van der Oost J; Medema MH; Sipkema D
    mSystems; 2022 Aug; 7(4):e0035722. PubMed ID: 35862823
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metagenomic binning of a marine sponge microbiome reveals unity in defense but metabolic specialization.
    Slaby BM; Hackl T; Horn H; Bayer K; Hentschel U
    ISME J; 2017 Nov; 11(11):2465-2478. PubMed ID: 28696422
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The sponge holobiont in a changing ocean: from microbes to ecosystems.
    Pita L; Rix L; Slaby BM; Franke A; Hentschel U
    Microbiome; 2018 Mar; 6(1):46. PubMed ID: 29523192
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.