BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 2446388)

  • 1. Microtubule gelation-contraction: essential components and relation to slow axonal transport.
    Weisenberg RC; Flynn J; Gao BC; Awodi S; Skee F; Goodman SR; Riederer BM
    Science; 1987 Nov; 238(4830):1119-22. PubMed ID: 2446388
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microtubule gelation-contraction in vitro and its relationship to component a of slow axonal transport.
    Weisenberg RC; Flynn J; Gao BC; Awodi S
    Cell Motil Cytoskeleton; 1988; 10(1-2):331-40. PubMed ID: 2460260
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis, axonal transport, and turnover of the high molecular weight microtubule-associated protein MAP 1A in mouse retinal ganglion cells: tubulin and MAP 1A display distinct transport kinetics.
    Nixon RA; Fischer I; Lewis SE
    J Cell Biol; 1990 Feb; 110(2):437-48. PubMed ID: 1688856
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of a microtubule-stimulated adenosinetriphosphatase activity associated with microtubule gelation-contraction.
    Gao BC; Weisenberg RC
    Biochemistry; 1988 Jul; 27(14):5032-8. PubMed ID: 2971394
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ATP-induced gelation--contraction of microtubules assembled in vitro.
    Weisenberg RC; Cianci C
    J Cell Biol; 1984 Oct; 99(4 Pt 1):1527-33. PubMed ID: 6480701
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isolation of polypeptides with microtubule-translocating activity from phragmoplasts of tobacco BY-2 cells.
    Asada T; Shibaoka H
    J Cell Sci; 1994 Aug; 107 ( Pt 8)():2249-57. PubMed ID: 7983184
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro translocation of organelles along microtubules.
    Schroer TA; Kelly RB
    Cell; 1985 Apr; 40(4):729-30. PubMed ID: 2580633
    [No Abstract]   [Full Text] [Related]  

  • 8. A calmodulin inhibitor with high specificity, compound 48/80, inhibits axonal transport in frog nerves without disruption of axonal microtubules.
    Ekström PA; Wallin M; Kanje M; Edström A
    Acta Physiol Scand; 1991 Jun; 142(2):181-9. PubMed ID: 1715113
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ATP-dependent gelation contraction of microtubules in vitro.
    Cianci C; Graff D; Gao B; Weisenberg RC
    Ann N Y Acad Sci; 1986; 466():656-9. PubMed ID: 3460440
    [No Abstract]   [Full Text] [Related]  

  • 10. A squid dynein isoform promotes axoplasmic vesicle translocation.
    Gilbert SP; Sloboda RD
    J Cell Biol; 1989 Nov; 109(5):2379-94. PubMed ID: 2478567
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cytoskeletal architecture and immunocytochemical localization of microtubule-associated proteins in regions of axons associated with rapid axonal transport: the beta,beta'-iminodipropionitrile-intoxicated axon as a model system.
    Hirokawa N; Bloom GS; Vallee RB
    J Cell Biol; 1985 Jul; 101(1):227-39. PubMed ID: 2409096
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynein is the motor for retrograde axonal transport of organelles.
    Schnapp BJ; Reese TS
    Proc Natl Acad Sci U S A; 1989 Mar; 86(5):1548-52. PubMed ID: 2466291
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Organelle, bead, and microtubule translocations promoted by soluble factors from the squid giant axon.
    Vale RD; Schnapp BJ; Reese TS; Sheetz MP
    Cell; 1985 Mar; 40(3):559-69. PubMed ID: 2578887
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Age-dependent alterations of microtubule-associated enzyme activities from bovine brain (protein kinase, adenosine triphosphatase, guanosine triphosphatase).
    Schröder HC; Bernd A; Zahn RK; Müller WE
    Mech Ageing Dev; 1983 May; 22(1):35-50. PubMed ID: 6137597
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gliding movement of and bidirectional transport along single native microtubules from squid axoplasm: evidence for an active role of microtubules in cytoplasmic transport.
    Allen RD; Weiss DG; Hayden JH; Brown DT; Fujiwake H; Simpson M
    J Cell Biol; 1985 May; 100(5):1736-52. PubMed ID: 2580845
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A model for fast axonal transport.
    Blum JJ; Reed MC
    Cell Motil; 1985; 5(6):507-27. PubMed ID: 2416456
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative analysis of microtubule transport in growing nerve processes.
    Ma Y; Shakiryanova D; Vardya I; Popov SV
    Curr Biol; 2004 Apr; 14(8):725-30. PubMed ID: 15084289
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The cold stability of microtubules increases during axonal maturation.
    Watson DF; Hoffman PN; Griffin JW
    J Neurosci; 1990 Oct; 10(10):3344-52. PubMed ID: 2213143
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cytoplasmic dynein and microtubule transport in the axon: the action connection.
    Pfister KK
    Mol Neurobiol; 1999; 20(2-3):81-91. PubMed ID: 10966115
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bull sperm 19S dynein polymerizes brain tubulin into microtubules.
    Eyer J; White D; Gagnon C
    Biochem Biophys Res Commun; 1987 Oct; 148(1):218-24. PubMed ID: 2960323
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.