These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 24463976)

  • 21. Enhanced thermostability of methyl parathion hydrolase from Ochrobactrum sp. M231 by rational engineering of a glycine to proline mutation.
    Tian J; Wang P; Gao S; Chu X; Wu N; Fan Y
    FEBS J; 2010 Dec; 277(23):4901-8. PubMed ID: 20977676
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Engineering of Thermal Stability in a Cold-Active Oligo-1,6-Glucosidase from
    Berlina YY; Petrovskaya LE; Kryukova EA; Shingarova LN; Gapizov SS; Kryukova MV; Rivkina EM; Kirpichnikov MP; Dolgikh DA
    Biomolecules; 2021 Aug; 11(8):. PubMed ID: 34439895
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Significant enhancement in the binding of p-nitrophenyl-beta-D-xylobioside by the E128H mutant F/10 xylanase from Streptomyces olivaceoviridis E-86.
    Kuno A; Shimizu D; Kaneko S; Hasegawa T; Gama Y; Hayashi K; Kusakabe I; Taira K
    FEBS Lett; 1999 May; 450(3):299-305. PubMed ID: 10359093
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Design of thermostable rhamnogalacturonan lyase mutants from Bacillus licheniformis by combination of targeted single point mutations.
    Silva IR; Jers C; Otten H; Nyffenegger C; Larsen DM; Derkx PM; Meyer AS; Mikkelsen JD; Larsen S
    Appl Microbiol Biotechnol; 2014 May; 98(10):4521-31. PubMed ID: 24419797
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Hydrophobic interaction between beta-sheet B1 and B2 in xylanase XYNB influencing the enzyme thermostability].
    Yang HM; Yao B; Luo HY; Zhang WZ; Wang YR; Yuan TZ; Bai YG; Wu NF; Fan YL
    Sheng Wu Gong Cheng Xue Bao; 2005 May; 21(3):414-9. PubMed ID: 16108366
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A C-terminal proline-rich sequence simultaneously broadens the optimal temperature and pH ranges and improves the catalytic efficiency of glycosyl hydrolase family 10 ruminal xylanases.
    Li Z; Xue X; Zhao H; Yang P; Luo H; Zhao J; Huang H; Yao B
    Appl Environ Microbiol; 2014 Jun; 80(11):3426-32. PubMed ID: 24657866
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Enhancement of the thermostability and hydrolytic activity of xylanase by random gene shuffling.
    Shibuya H; Kaneko S; Hayashi K
    Biochem J; 2000 Jul; 349(Pt 2):651-6. PubMed ID: 10880366
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Role of N-linked glycosylation in the enzymatic properties of a thermophilic GH 10 xylanase from Aspergillus fumigatus expressed in Pichia pastoris.
    Chang X; Xu B; Bai Y; Luo H; Ma R; Shi P; Yao B
    PLoS One; 2017; 12(2):e0171111. PubMed ID: 28187141
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Thermostabilization of the Bacillus circulans xylanase by the introduction of disulfide bonds.
    Wakarchuk WW; Sung WL; Campbell RL; Cunningham A; Watson DC; Yaguchi M
    Protein Eng; 1994 Nov; 7(11):1379-86. PubMed ID: 7700870
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Rational design of a Yarrowia lipolytica derived lipase for improved thermostability.
    Zhang H; Sang J; Zhang Y; Sun T; Liu H; Yue R; Zhang J; Wang H; Dai Y; Lu F; Liu F
    Int J Biol Macromol; 2019 Sep; 137():1190-1198. PubMed ID: 31299254
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Specific characterization of substrate and inhibitor binding sites of a glycosyl hydrolase family 11 xylanase from Aspergillus niger.
    Tahir TA; Berrin JG; Flatman R; Roussel A; Roepstorff P; Williamson G; Juge N
    J Biol Chem; 2002 Nov; 277(46):44035-43. PubMed ID: 12207016
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Enhancing the thermostability of phospholipase D from Streptomyces halstedii by directed evolution and elucidating the mechanism of a key amino acid residue using molecular dynamics simulation.
    Huang L; Ma J; Sang J; Wang N; Wang S; Wang C; Kang H; Liu F; Lu F; Liu Y
    Int J Biol Macromol; 2020 Dec; 164():3065-3074. PubMed ID: 32858108
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Engineering and introduction of de novo disulphide bridges in organophosphorus hydrolase enzyme for thermostability improvement.
    Farnoosh G; Khajeh K; Latifi AM; Aghamollaei H
    J Biosci; 2016 Dec; 41(4):577-588. PubMed ID: 27966481
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Improvement of thermostability of cholesterol oxidase from streptomyces Sp. SA-COO by random mutagenesis.
    Fazaeli A; Fana SE; Golestani A; Aminian M
    Protein Expr Purif; 2022 Mar; 191():106028. PubMed ID: 34863881
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Improvement of Selenomonas ruminantium β-xylosidase thermal stability by replacing buried free cysteines via site directed mutagenesis.
    Dehnavi E; Moeini S; Akbarzadeh A; Dabirmanesh B; Siadat SOR; Khajeh K
    Int J Biol Macromol; 2019 Sep; 136():352-358. PubMed ID: 31220489
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Thermostable sites and catalytic characterization of xylanase XYNB of Aspergillus niger SCTCC 400264.
    Li XR; Xu H; Xie J; Yi QF; Li W; Qiao DR; Cao Y; Cao Y
    J Microbiol Biotechnol; 2014 Apr; 24(4):483-8. PubMed ID: 24444997
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Molecular basis for thermal properties of Streptomyces thermovulgaris fumarase C hinge at hydrophilic amino acids R163, E170 and S347.
    Lin W; Chan M; Goh LL; Sim TS
    Appl Microbiol Biotechnol; 2007 May; 75(2):329-35. PubMed ID: 17245573
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A mutant phospholipase D with enhanced thermostability from Streptomyces sp.
    Hatanaka T; Negishi T; Mori K
    Biochim Biophys Acta; 2004 Jan; 1696(1):75-82. PubMed ID: 14726207
    [TBL] [Abstract][Full Text] [Related]  

  • 39. One-step combined focused epPCR and saturation mutagenesis for thermostability evolution of a new cold-active xylanase.
    Acevedo JP; Reetz MT; Asenjo JA; Parra LP
    Enzyme Microb Technol; 2017 May; 100():60-70. PubMed ID: 28284313
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The use of forced protein evolution to investigate and improve stability of family 10 xylanases. The production of Ca2+-independent stable xylanases.
    Andrews SR; Taylor EJ; Pell G; Vincent F; Ducros VM; Davies GJ; Lakey JH; Gilbert HJ
    J Biol Chem; 2004 Dec; 279(52):54369-79. PubMed ID: 15452124
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.