These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 24464046)
1. Electric field Monte Carlo simulation of focused stimulated emission depletion beam, radially and azimuthally polarized beams for in vivo deep bioimaging. Cai F; He S J Biomed Opt; 2014 Jan; 19(1):11022. PubMed ID: 24464046 [TBL] [Abstract][Full Text] [Related]
2. Electric field Monte Carlo simulation of coherent backscattering of polarized light by a turbid medium containing Mie scatterers. Sawicki J; Kastor N; Xu M Opt Express; 2008 Apr; 16(8):5728-38. PubMed ID: 18542681 [TBL] [Abstract][Full Text] [Related]
3. Decomposition of radially and azimuthally polarized beams using a circular-polarization and vortex-sensing diffraction grating. Moreno I; Davis JA; Ruiz I; Cottrell DM Opt Express; 2010 Mar; 18(7):7173-83. PubMed ID: 20389738 [TBL] [Abstract][Full Text] [Related]
4. Average irradiance and polarization properties of a radially or azimuthally polarized beam in a turbulent atmosphere. Cai Y; Lin Q; Eyyuboğlu HT; Baykal Y Opt Express; 2008 May; 16(11):7665-73. PubMed ID: 18545474 [TBL] [Abstract][Full Text] [Related]
11. Propagation of coherent polarized light in turbid highly scattering medium. Doronin A; Macdonald C; Meglinski I J Biomed Opt; 2014 Feb; 19(2):025005. PubMed ID: 24556700 [TBL] [Abstract][Full Text] [Related]
12. Comparison of simplified Monte Carlo simulation and diffusion approximation for the fluorescence signal from phantoms with typical mouse tissue optical properties. Ma G; Delorme JF; Gallant P; Boas DA Appl Opt; 2007 Apr; 46(10):1686-92. PubMed ID: 17356611 [TBL] [Abstract][Full Text] [Related]
13. Nonparaxial analyses of radially polarized beams diffracted at a circular aperture. Jia X; Wang Y; Li B Opt Express; 2010 Mar; 18(7):7064-75. PubMed ID: 20389727 [TBL] [Abstract][Full Text] [Related]
14. Coupled forward-adjoint Monte Carlo simulation of spatial-angular light fields to determine optical sensitivity in turbid media. Gardner AR; Hayakawa CK; Venugopalan V J Biomed Opt; 2014 Jun; 19(6):065003. PubMed ID: 24972356 [TBL] [Abstract][Full Text] [Related]
15. Depolarization of light in turbid media: a scattering event resolved Monte Carlo study. Guo X; Wood MF; Ghosh N; Vitkin IA Appl Opt; 2010 Jan; 49(2):153-62. PubMed ID: 20062501 [TBL] [Abstract][Full Text] [Related]
16. Diffuse light propagation in a turbid medium with varying refractive index: Monte Carlo modeling in a spherically symmetrical geometry. Shendeleva ML; Molloy JA Appl Opt; 2006 Sep; 45(27):7018-25. PubMed ID: 16946780 [TBL] [Abstract][Full Text] [Related]
17. Analysis of simulated and experimental backscattered images of turbid media in linearly polarized light: estimation of the anisotropy factor. Falconet J; Sablong R; Perrin E; Jaillon F; Saint-Jalmes H Appl Opt; 2008 Nov; 47(31):5811-20. PubMed ID: 19122723 [TBL] [Abstract][Full Text] [Related]
18. Backscattering of linearly polarized light from turbid tissue-like scattering medium with rough surface. Doronin A; Tchvialeva L; Markhvida I; Lee TK; Meglinski I J Biomed Opt; 2016 Jul; 21(7):71117. PubMed ID: 27401802 [TBL] [Abstract][Full Text] [Related]
19. Fiber based polarization filter for radially and azimuthally polarized light. Jocher C; Jauregui C; Voigtländer C; Stutzki F; Nolte S; Limpert J; Tünnermann A Opt Express; 2011 Sep; 19(20):19582-90. PubMed ID: 21996899 [TBL] [Abstract][Full Text] [Related]