These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
230 related articles for article (PubMed ID: 24464458)
1. Contribution of many charged residues at the stator-rotor interface of the Na+-driven flagellar motor to torque generation in Vibrio alginolyticus. Takekawa N; Kojima S; Homma M J Bacteriol; 2014 Apr; 196(7):1377-85. PubMed ID: 24464458 [TBL] [Abstract][Full Text] [Related]
2. Characterization of PomA mutants defective in the functional assembly of the Na(+)-driven flagellar motor in Vibrio alginolyticus. Takekawa N; Li N; Kojima S; Homma M J Bacteriol; 2012 Apr; 194(8):1934-9. PubMed ID: 22343296 [TBL] [Abstract][Full Text] [Related]
3. Roles of charged residues of rotor and stator in flagellar rotation: comparative study using H+-driven and Na+-driven motors in Escherichia coli. Yakushi T; Yang J; Fukuoka H; Homma M; Blair DF J Bacteriol; 2006 Feb; 188(4):1466-72. PubMed ID: 16452430 [TBL] [Abstract][Full Text] [Related]
4. Mutations targeting the C-terminal domain of FliG can disrupt motor assembly in the Na(+)-driven flagella of Vibrio alginolyticus. Kojima S; Nonoyama N; Takekawa N; Fukuoka H; Homma M J Mol Biol; 2011 Nov; 414(1):62-74. PubMed ID: 21986199 [TBL] [Abstract][Full Text] [Related]
5. Construction of functional fragments of the cytoplasmic loop with the C-terminal region of PomA, a stator component of the Vibrio Na+ driven flagellar motor. Onoue Y; Abe-Yoshizumi R; Gohara M; Kobayashi S; Nishioka N; Kojima S; Homma M J Biochem; 2014 Mar; 155(3):207-16. PubMed ID: 24398784 [TBL] [Abstract][Full Text] [Related]
6. Sodium-dependent dynamic assembly of membrane complexes in sodium-driven flagellar motors. Fukuoka H; Wada T; Kojima S; Ishijima A; Homma M Mol Microbiol; 2009 Feb; 71(4):825-35. PubMed ID: 19183284 [TBL] [Abstract][Full Text] [Related]
7. Roles of charged residues in the C-terminal region of PomA, a stator component of the Na+-driven flagellar motor. Obara M; Yakushi T; Kojima S; Homma M J Bacteriol; 2008 May; 190(10):3565-71. PubMed ID: 18326582 [TBL] [Abstract][Full Text] [Related]
8. Mutations in the stator protein PomA affect switching of rotational direction in bacterial flagellar motor. Terashima H; Hori K; Ihara K; Homma M; Kojima S Sci Rep; 2022 Feb; 12(1):2979. PubMed ID: 35194097 [TBL] [Abstract][Full Text] [Related]
9. Assembly of motor proteins, PomA and PomB, in the Na+-driven stator of the flagellar motor. Fukuoka H; Yakushi T; Kusumoto A; Homma M J Mol Biol; 2005 Aug; 351(4):707-17. PubMed ID: 16038931 [TBL] [Abstract][Full Text] [Related]
10. Hoop-like role of the cytosolic interface helix in Vibrio PomA, an ion-conducting membrane protein, in the bacterial flagellar motor. Nishikino T; Sagara Y; Terashima H; Homma M; Kojima S J Biochem; 2022 Mar; 171(4):443-450. PubMed ID: 35015887 [TBL] [Abstract][Full Text] [Related]
11. Site-directed crosslinking identifies the stator-rotor interaction surfaces in a hybrid bacterial flagellar motor. Terashima H; Kojima S; Homma M J Bacteriol; 2021 May; 203(9):. PubMed ID: 33619152 [TBL] [Abstract][Full Text] [Related]
12. Intragenic suppressor of a plug deletion nonmotility mutation in PotB, a chimeric stator protein of sodium-driven flagella. Zhu S; Homma M; Kojima S J Bacteriol; 2012 Dec; 194(24):6728-35. PubMed ID: 23024347 [TBL] [Abstract][Full Text] [Related]
13. The conserved charged residues of the C-terminal region of FliG, a rotor component of the Na+-driven flagellar motor. Yorimitsu T; Mimaki A; Yakushi T; Homma M J Mol Biol; 2003 Nov; 334(3):567-83. PubMed ID: 14623195 [TBL] [Abstract][Full Text] [Related]
14. The systematic substitutions around the conserved charged residues of the cytoplasmic loop of Na+-driven flagellar motor component PomA. Yorimitsu T; Sowa Y; Ishijima A; Yakushi T; Homma M J Mol Biol; 2002 Jul; 320(2):403-13. PubMed ID: 12079395 [TBL] [Abstract][Full Text] [Related]
15. Requirements for conversion of the Na(+)-driven flagellar motor of Vibrio cholerae to the H(+)-driven motor of Escherichia coli. Gosink KK; Häse CC J Bacteriol; 2000 Aug; 182(15):4234-40. PubMed ID: 10894732 [TBL] [Abstract][Full Text] [Related]
16. Characterization of the periplasmic region of PomB, a Na+-driven flagellar stator protein in Vibrio alginolyticus. Li N; Kojima S; Homma M J Bacteriol; 2011 Aug; 193(15):3773-84. PubMed ID: 21602350 [TBL] [Abstract][Full Text] [Related]
17. Multimeric structure of the PomA/PomB channel complex in the Na+-driven flagellar motor of Vibrio alginolyticus. Yorimitsu T; Kojima M; Yakushi T; Homma M J Biochem; 2004 Jan; 135(1):43-51. PubMed ID: 14999008 [TBL] [Abstract][Full Text] [Related]
18. A conserved residue, PomB-F22, in the transmembrane segment of the flagellar stator complex, has a critical role in conducting ions and generating torque. Terauchi T; Terashima H; Kojima S; Homma M Microbiology (Reading); 2011 Aug; 157(Pt 8):2422-2432. PubMed ID: 21636648 [TBL] [Abstract][Full Text] [Related]
19. Sodium-driven motor of the polar flagellum in marine bacteria Vibrio. Li N; Kojima S; Homma M Genes Cells; 2011 Oct; 16(10):985-99. PubMed ID: 21895888 [TBL] [Abstract][Full Text] [Related]
20. Hybrid motor with H(+)- and Na(+)-driven components can rotate Vibrio polar flagella by using sodium ions. Asai Y; Kawagishi I; Sockett RE; Homma M J Bacteriol; 1999 Oct; 181(20):6332-8. PubMed ID: 10515922 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]