These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 24464485)

  • 21. Modeling gating charge and voltage changes in response to charge separation in membrane proteins.
    Kim I; Chakrabarty S; Brzezinski P; Warshel A
    Proc Natl Acad Sci U S A; 2014 Aug; 111(31):11353-8. PubMed ID: 25049404
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Atomic-level simulation of current-voltage relationships in single-file ion channels.
    Jensen MØ; Jogini V; Eastwood MP; Shaw DE
    J Gen Physiol; 2013 May; 141(5):619-32. PubMed ID: 23589581
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The last few frames of the voltage-gating movie.
    Sigworth FJ
    Biophys J; 2007 Nov; 93(9):2981-3. PubMed ID: 17704178
    [No Abstract]   [Full Text] [Related]  

  • 24. Conformational dynamics of the inner pore helix of voltage-gated potassium channels.
    Choe S; Grabe M
    J Chem Phys; 2009 Jun; 130(21):215103. PubMed ID: 19508102
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Voltage-gated ion channel modulation by lipids: insights from molecular dynamics simulations.
    Kasimova MA; Tarek M; Shaytan AK; Shaitan KV; Delemotte L
    Biochim Biophys Acta; 2014 May; 1838(5):1322-31. PubMed ID: 24513257
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Omega currents in voltage-gated ion channels: what can we learn from uncovering the voltage-sensing mechanism using MD simulations?
    Tarek M; Delemotte L
    Acc Chem Res; 2013 Dec; 46(12):2755-62. PubMed ID: 23697886
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Molecular dynamic simulation of the Kv1.2 voltage-gated potassium channel in open and closed state conformations.
    Han M; Zhang JZ
    J Phys Chem B; 2008 Dec; 112(51):16966-74. PubMed ID: 19093881
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Conformational changes and slow dynamics through microsecond polarized atomistic molecular simulation of an integral Kv1.2 ion channel.
    Bjelkmar P; Niemelä PS; Vattulainen I; Lindahl E
    PLoS Comput Biol; 2009 Feb; 5(2):e1000289. PubMed ID: 19229308
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structural and molecular insight into the pH-induced low-permeability of the voltage-gated potassium channel Kv1.2 through dewetting of the water cavity.
    Lee J; Kang M; Kim S; Chang I
    PLoS Comput Biol; 2020 Apr; 16(4):e1007405. PubMed ID: 32315300
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Intermediate states of the Kv1.2 voltage sensor from atomistic molecular dynamics simulations.
    Delemotte L; Tarek M; Klein ML; Amaral C; Treptow W
    Proc Natl Acad Sci U S A; 2011 Apr; 108(15):6109-14. PubMed ID: 21444776
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Initial response of the potassium channel voltage sensor to a transmembrane potential.
    Treptow W; Tarek M; Klein ML
    J Am Chem Soc; 2009 Feb; 131(6):2107-9. PubMed ID: 19175309
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of sensor domain mutations on the properties of voltage-gated ion channels: molecular dynamics studies of the potassium channel Kv1.2.
    Delemotte L; Treptow W; Klein ML; Tarek M
    Biophys J; 2010 Nov; 99(9):L72-4. PubMed ID: 21044565
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Voltage-dependent gating in K channels: experimental results and quantitative models.
    Catacuzzeno L; Sforna L; Franciolini F
    Pflugers Arch; 2020 Jan; 472(1):27-47. PubMed ID: 31863286
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Glycosylation affects rat Kv1.1 potassium channel gating by a combined surface potential and cooperative subunit interaction mechanism.
    Watanabe I; Wang HG; Sutachan JJ; Zhu J; Recio-Pinto E; Thornhill WB
    J Physiol; 2003 Jul; 550(Pt 1):51-66. PubMed ID: 12879861
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Principles of conduction and hydrophobic gating in K+ channels.
    Jensen MØ; Borhani DW; Lindorff-Larsen K; Maragakis P; Jogini V; Eastwood MP; Dror RO; Shaw DE
    Proc Natl Acad Sci U S A; 2010 Mar; 107(13):5833-8. PubMed ID: 20231479
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Rate-limiting reactions determining different activation kinetics of Kv1.2 and Kv2.1 channels.
    Scholle A; Dugarmaa S; Zimmer T; Leonhardt M; Koopmann R; Engeland B; Pongs O; Benndorf K
    J Membr Biol; 2004 Mar; 198(2):103-12. PubMed ID: 15138750
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Calculation of the gating charge for the Kv1.2 voltage-activated potassium channel.
    Khalili-Araghi F; Jogini V; Yarov-Yarovoy V; Tajkhorshid E; Roux B; Schulten K
    Biophys J; 2010 May; 98(10):2189-98. PubMed ID: 20483327
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of external pH on activation of the Kv1.5 potassium channel.
    Trapani JG; Korn SJ
    Biophys J; 2003 Jan; 84(1):195-204. PubMed ID: 12524275
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Simulation of Gating Currents of the Shaker K Channel Using a Brownian Model of the Voltage Sensor.
    Catacuzzeno L; Franciolini F
    Biophys J; 2019 Nov; 117(10):2005-2019. PubMed ID: 31653450
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structure prediction for the down state of a potassium channel voltage sensor.
    Grabe M; Lai HC; Jain M; Jan YN; Jan LY
    Nature; 2007 Feb; 445(7127):550-3. PubMed ID: 17187053
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.