These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
249 related articles for article (PubMed ID: 24464618)
1. Stability and aggregation of silver and titanium dioxide nanoparticles in seawater: role of salinity and dissolved organic carbon. Wang H; Burgess RM; Cantwell MG; Portis LM; Perron MM; Wu F; Ho KT Environ Toxicol Chem; 2014 May; 33(5):1023-9. PubMed ID: 24464618 [TBL] [Abstract][Full Text] [Related]
2. The impact of size on the fate and toxicity of nanoparticulate silver in aquatic systems. Angel BM; Batley GE; Jarolimek CV; Rogers NJ Chemosphere; 2013 Sep; 93(2):359-65. PubMed ID: 23732009 [TBL] [Abstract][Full Text] [Related]
3. Environmental fate and behavior of silver nanoparticles in natural estuarine systems. Li P; Su M; Wang X; Zou X; Sun X; Shi J; Zhang H J Environ Sci (China); 2020 Feb; 88():248-259. PubMed ID: 31862066 [TBL] [Abstract][Full Text] [Related]
4. Influence of hardness on the bioavailability of silver to a freshwater snail after waterborne exposure to silver nitrate and silver nanoparticles. Stoiber T; Croteau MN; Römer I; Tejamaya M; Lead JR; Luoma SN Nanotoxicology; 2015; 9(7):918-27. PubMed ID: 25676617 [TBL] [Abstract][Full Text] [Related]
5. Toxicity, bioaccumulation, and biotransformation of silver nanoparticles in marine organisms. Wang H; Ho KT; Scheckel KG; Wu F; Cantwell MG; Katz DR; Horowitz DB; Boothman WS; Burgess RM Environ Sci Technol; 2014 Dec; 48(23):13711-7. PubMed ID: 25369427 [TBL] [Abstract][Full Text] [Related]
6. Agglomeration of Ag and TiO2 nanoparticles in surface and wastewater: Role of calcium ions and of organic carbon fractions. Topuz E; Traber J; Sigg L; Talinli I Environ Pollut; 2015 Sep; 204():313-23. PubMed ID: 26057362 [TBL] [Abstract][Full Text] [Related]
7. Salinity influences on the uptake of silver nanoparticles and silver nitrate by marine medaka (Oryzias melastigma). Wang J; Wang WX Environ Toxicol Chem; 2014 Mar; 33(3):632-40. PubMed ID: 24464862 [TBL] [Abstract][Full Text] [Related]
8. Persistence of singly dispersed silver nanoparticles in natural freshwaters, synthetic seawater, and simulated estuarine waters. Chinnapongse SL; MacCuspie RI; Hackley VA Sci Total Environ; 2011 May; 409(12):2443-50. PubMed ID: 21481439 [TBL] [Abstract][Full Text] [Related]
9. Seasonal variability of natural water chemistry affects the fate and behaviour of silver nanoparticles. Ellis LA; Baalousha M; Valsami-Jones E; Lead JR Chemosphere; 2018 Jan; 191():616-625. PubMed ID: 29073569 [TBL] [Abstract][Full Text] [Related]
10. Stability of single dispersed silver nanoparticles in natural and synthetic freshwaters: Effects of dissolved oxygen. Zou X; Li P; Lou J; Fu X; Zhang H Environ Pollut; 2017 Nov; 230():674-682. PubMed ID: 28715772 [TBL] [Abstract][Full Text] [Related]
11. Coexistence of silver and titanium dioxide nanoparticles: enhancing or reducing environmental risks? Zou X; Shi J; Zhang H Aquat Toxicol; 2014 Sep; 154():168-75. PubMed ID: 24907921 [TBL] [Abstract][Full Text] [Related]
12. Water chemistry controlled aggregation and photo-transformation of silver nanoparticles in environmental waters. Yin Y; Yang X; Zhou X; Wang W; Yu S; Liu J; Jiang G J Environ Sci (China); 2015 Aug; 34():116-25. PubMed ID: 26257354 [TBL] [Abstract][Full Text] [Related]
13. Influences of water properties on the aggregation and deposition of engineered titanium dioxide nanoparticles in natural waters. Li L; Sillanpää M; Risto M Environ Pollut; 2016 Dec; 219():132-138. PubMed ID: 27814528 [TBL] [Abstract][Full Text] [Related]
14. Highly dynamic PVP-coated silver nanoparticles in aquatic environments: chemical and morphology change induced by oxidation of Ag(0) and reduction of Ag(+). Yu SJ; Yin YG; Chao JB; Shen MH; Liu JF Environ Sci Technol; 2014; 48(1):403-11. PubMed ID: 24328224 [TBL] [Abstract][Full Text] [Related]
15. Silver nanoparticle behaviour in lake water depends on their surface coating. Jiménez-Lamana J; Slaveykova VI Sci Total Environ; 2016 Dec; 573():946-953. PubMed ID: 27599058 [TBL] [Abstract][Full Text] [Related]
16. Fate of nanoparticles during alum and ferric coagulation monitored using single particle ICP-MS. Donovan AR; Adams CD; Ma Y; Stephan C; Eichholz T; Shi H Chemosphere; 2018 Mar; 195():531-541. PubMed ID: 29277033 [TBL] [Abstract][Full Text] [Related]
17. Particle coating-dependent interaction of molecular weight fractionated natural organic matter: impacts on the aggregation of silver nanoparticles. Yin Y; Shen M; Tan Z; Yu S; Liu J; Jiang G Environ Sci Technol; 2015 Jun; 49(11):6581-9. PubMed ID: 25941838 [TBL] [Abstract][Full Text] [Related]
18. The effect of natural water conditions on the anti-bacterial performance and stability of silver nanoparticles capped with different polymers. Zhang H; Smith JA; Oyanedel-Craver V Water Res; 2012 Mar; 46(3):691-9. PubMed ID: 22169660 [TBL] [Abstract][Full Text] [Related]
19. The diverse toxic effect of SiO₂ and TiO₂ nanoparticles toward the marine microalgae Dunaliella tertiolecta. Manzo S; Buono S; Rametta G; Miglietta M; Schiavo S; Di Francia G Environ Sci Pollut Res Int; 2015 Oct; 22(20):15941-51. PubMed ID: 26054456 [TBL] [Abstract][Full Text] [Related]
20. Relative importance of the humic and fulvic fractions of natural organic matter in the aggregation and deposition of silver nanoparticles. Furman O; Usenko S; Lau BL Environ Sci Technol; 2013 Feb; 47(3):1349-56. PubMed ID: 23298221 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]