BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 24464704)

  • 21. Metabolic pathway analysis approach: identification of novel therapeutic target against methicillin resistant Staphylococcus aureus.
    Uddin R; Saeed K; Khan W; Azam SS; Wadood A
    Gene; 2015 Feb; 556(2):213-26. PubMed ID: 25436466
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Target identification in Fusobacterium nucleatum by subtractive genomics approach and enrichment analysis of host-pathogen protein-protein interactions.
    Kumar A; Thotakura PL; Tiwary BK; Krishna R
    BMC Microbiol; 2016 May; 16():84. PubMed ID: 27176600
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Core Proteomic Analysis of Unique Metabolic Pathways of Salmonella enterica for the Identification of Potential Drug Targets.
    Uddin R; Sufian M
    PLoS One; 2016; 11(1):e0146796. PubMed ID: 26799565
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Assessing the progress of Mycobacterium tuberculosis H37Rv structural genomics.
    Fang Z; van der Merwe RG; Warren RM; Schubert WD; Gey van Pittius NC
    Tuberculosis (Edinb); 2015 Mar; 95(2):131-6. PubMed ID: 25578513
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Novel Drug Targets for Food-Borne Pathogen Campylobacter jejuni: An Integrated Subtractive Genomics and Comparative Metabolic Pathway Study.
    Mehla K; Ramana J
    OMICS; 2015 Jul; 19(7):393-406. PubMed ID: 26061459
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Uncovering new signaling proteins and potential drug targets through the interactome analysis of Mycobacterium tuberculosis.
    Cui T; Zhang L; Wang X; He ZG
    BMC Genomics; 2009 Mar; 10():118. PubMed ID: 19298676
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Proteins with complex architecture as potential targets for drug design: a case study of Mycobacterium tuberculosis.
    Mészáros B; Tóth J; Vértessy BG; Dosztányi Z; Simon I
    PLoS Comput Biol; 2011 Jul; 7(7):e1002118. PubMed ID: 21814507
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Increasing the structural coverage of tuberculosis drug targets.
    Baugh L; Phan I; Begley DW; Clifton MC; Armour B; Dranow DM; Taylor BM; Muruthi MM; Abendroth J; Fairman JW; Fox D; Dieterich SH; Staker BL; Gardberg AS; Choi R; Hewitt SN; Napuli AJ; Myers J; Barrett LK; Zhang Y; Ferrell M; Mundt E; Thompkins K; Tran N; Lyons-Abbott S; Abramov A; Sekar A; Serbzhinskiy D; Lorimer D; Buchko GW; Stacy R; Stewart LJ; Edwards TE; Van Voorhis WC; Myler PJ
    Tuberculosis (Edinb); 2015 Mar; 95(2):142-8. PubMed ID: 25613812
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structure-based approaches to drug discovery against tuberculosis.
    Holton SJ; Weiss MS; Tucker PA; Wilmanns M
    Curr Protein Pept Sci; 2007 Aug; 8(4):365-75. PubMed ID: 17696869
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mycobacterium tuberculosis: a model system for structural genomics.
    Smith CV; Sacchettini JC
    Curr Opin Struct Biol; 2003 Dec; 13(6):658-64. PubMed ID: 14675542
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Proteomic characterization of Mycobacterium tuberculosis reveals potential targets of bostrycin.
    Yuan P; He L; Chen D; Sun Y; Ge Z; Shen D; Lu Y
    J Proteomics; 2020 Feb; 212():103576. PubMed ID: 31706025
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structural genomics of Mycobacterium tuberculosis: a preliminary report of progress at UCLA.
    Goulding CW; Perry LJ; Anderson D; Sawaya MR; Cascio D; Apostol MI; Chan S; Parseghian A; Wang SS; Wu Y; Cassano V; Gill HS; Eisenberg D
    Biophys Chem; 2003 Sep; 105(2-3):361-70. PubMed ID: 14499904
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparative genomic analysis of Rickettsia rickettsii for identification of drug and vaccine targets: tolC as a proposed candidate for case study.
    Maurya PK; Singh S; Mani A
    Acta Trop; 2018 Jun; 182():100-110. PubMed ID: 29474831
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An
    Kumar S; Sahu P; Jena L
    Int J Mycobacteriol; 2019; 8(3):252-261. PubMed ID: 31512601
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The progress made in determining the Mycobacterium tuberculosis structural proteome.
    Ehebauer MT; Wilmanns M
    Proteomics; 2011 Aug; 11(15):3128-33. PubMed ID: 21674801
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Molecular models of protein targets from Mycobacterium tuberculosis.
    Silveira NJ; Uchôa HB; Pereira JH; Canduri F; Basso LA; Palma MS; Santos DS; de Azevedo WF
    J Mol Model; 2005 Mar; 11(2):160-6. PubMed ID: 15759144
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Uridine monophosphate kinase as potential target for tuberculosis: from target to lead identification.
    Arvind A; Jain V; Saravanan P; Mohan CG
    Interdiscip Sci; 2013 Dec; 5(4):296-311. PubMed ID: 24402823
    [TBL] [Abstract][Full Text] [Related]  

  • 38. In Silico Subtractive Proteomics and Molecular Docking Approaches for the Identification of Novel Inhibitors against
    Shami A; Alharbi NK; Al-Saeed FA; Alsaegh AA; Al Syaad KM; Abd El-Rahim IHA; Mostafa YS; Ahmed AE
    Life (Basel); 2023 May; 13(5):. PubMed ID: 37240772
    [No Abstract]   [Full Text] [Related]  

  • 39. Comparative analyses of the proteins from Mycobacterium tuberculosis and human genomes: Identification of potential tuberculosis drug targets.
    Sridhar S; Dash P; Guruprasad K
    Gene; 2016 Mar; 579(1):69-74. PubMed ID: 26762852
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structure based drug discovery for designing leads for the non-toxic metabolic targets in multi drug resistant Mycobacterium tuberculosis.
    Kaur D; Mathew S; Nair CGS; Begum A; Jainanarayan AK; Sharma M; Brahmachari SK
    J Transl Med; 2017 Dec; 15(1):261. PubMed ID: 29268770
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.