BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 24464704)

  • 41. Protein interaction network analysis--approach for potential drug target identification in Mycobacterium tuberculosis.
    Kushwaha SK; Shakya M
    J Theor Biol; 2010 Jan; 262(2):284-94. PubMed ID: 19833135
    [TBL] [Abstract][Full Text] [Related]  

  • 42. [Frontier of mycobacterium research--host vs. mycobacterium].
    Okada M; Shirakawa T
    Kekkaku; 2005 Sep; 80(9):613-29. PubMed ID: 16245793
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Identification of potential drug targets by subtractive genome analysis of Escherichia coli O157:H7: an in silico approach.
    Mondal SI; Ferdous S; Jewel NA; Akter A; Mahmud Z; Islam MM; Afrin T; Karim N
    Adv Appl Bioinform Chem; 2015; 8():49-63. PubMed ID: 26677339
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Structural proteomics and computational analysis of a deadly pathogen: combating Mycobacterium tuberculosis from multiple fronts.
    Strong M; Goulding CW
    Methods Biochem Anal; 2006; 49():245-69. PubMed ID: 16929683
    [No Abstract]   [Full Text] [Related]  

  • 45. Mycobacterial genomics and structural bioinformatics: opportunities and challenges in drug discovery.
    Waman VP; Vedithi SC; Thomas SE; Bannerman BP; Munir A; Skwark MJ; Malhotra S; Blundell TL
    Emerg Microbes Infect; 2019; 8(1):109-118. PubMed ID: 30866765
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Identification of novel therapeutic target and epitopes through proteome mining from essential hypothetical proteins in Salmonella strains: An In silico approach towards antivirulence therapy and vaccine development.
    Sah PP; Bhattacharya S; Banerjee A; Ray S
    Infect Genet Evol; 2020 Sep; 83():104315. PubMed ID: 32276082
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Identification of unique essential proteins from a Mycobacterium tuberculosis F15/LAM4/KZN phage secretome library.
    Chiliza TE; Pillay M; Pillay B
    Pathog Dis; 2017 Jan; 75(1):. PubMed ID: 28087649
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Subtractive genomics and molecular docking approach to identify drug targets against Stenotrophomonas maltophilia.
    Saleem H; Ashfaq UA; Nadeem H; Zubair M; Siddique MH; Rasul I
    PLoS One; 2021; 16(12):e0261111. PubMed ID: 34910751
    [TBL] [Abstract][Full Text] [Related]  

  • 49. In-silico Subtractive Proteomic Analysis Approach for Therapeutic Targets in MDR Salmonella enterica subsp. enterica serovar Typhi str. CT18.
    Rahman N; Muhammad I; Nayab GE; Khan H; Filosa R; Xiao J; Hassan STS
    Curr Top Med Chem; 2019; 19(29):2708-2717. PubMed ID: 31702501
    [TBL] [Abstract][Full Text] [Related]  

  • 50. UniDrug-target: a computational tool to identify unique drug targets in pathogenic bacteria.
    Chanumolu SK; Rout C; Chauhan RS
    PLoS One; 2012; 7(3):e32833. PubMed ID: 22431985
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Mycobacterium tuberculosis RmlC epimerase (Rv3465): a promising drug-target structure in the rhamnose pathway.
    Kantardjieff KA; Kim CY; Naranjo C; Waldo GS; Lekin T; Segelke BW; Zemla A; Park MS; Terwilliger TC; Rupp B
    Acta Crystallogr D Biol Crystallogr; 2004 May; 60(Pt 5):895-902. PubMed ID: 15103135
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Protein Integrated Network Analysis to Reveal Potential Drug Targets Against Extended Drug-Resistant Mycobacterium tuberculosis XDR1219.
    Zahra NUA; Jamil F; Uddin R
    Mol Biotechnol; 2021 Dec; 63(12):1252-1267. PubMed ID: 34382159
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Toward the virtual screening of potential drugs in the homology modeled NAD+ dependent DNA ligase from Mycobacterium tuberculosis.
    Singh V; Somvanshi P
    Protein Pept Lett; 2010 Feb; 17(2):269-76. PubMed ID: 20214650
    [TBL] [Abstract][Full Text] [Related]  

  • 54. In silico comparative genomics analysis of Plasmodium falciparum for the identification of putative essential genes and therapeutic candidates.
    Rout S; Warhurst DC; Suar M; Mahapatra RK
    J Microbiol Methods; 2015 Feb; 109():1-8. PubMed ID: 25486552
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Structural Annotation of the Mycobacterium tuberculosis Proteome.
    Chandra N; Sandhya S; Anand P
    Microbiol Spectr; 2014 Apr; 2(2):. PubMed ID: 26105824
    [TBL] [Abstract][Full Text] [Related]  

  • 56. TSTMP: target selection for structural genomics of human transmembrane proteins.
    Varga J; Dobson L; Reményi I; Tusnády GE
    Nucleic Acids Res; 2017 Jan; 45(D1):D325-D330. PubMed ID: 27924015
    [TBL] [Abstract][Full Text] [Related]  

  • 57. First succinyl-proteome profiling of extensively drug-resistant Mycobacterium tuberculosis revealed involvement of succinylation in cellular physiology.
    Xie L; Liu W; Li Q; Chen S; Xu M; Huang Q; Zeng J; Zhou M; Xie J
    J Proteome Res; 2015 Jan; 14(1):107-19. PubMed ID: 25363132
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Genomewide Assessment of Mycobacterium tuberculosis Conditionally Essential Metabolic Pathways.
    Minato Y; Gohl DM; Thiede JM; Chacón JM; Harcombe WR; Maruyama F; Baughn AD
    mSystems; 2019 Jun; 4(4):. PubMed ID: 31239393
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Subtractive genomics profiling for potential drug targets identification against Moraxella catarrhalis.
    Ashraf B; Atiq N; Khan K; Wadood A; Uddin R
    PLoS One; 2022; 17(8):e0273252. PubMed ID: 36006987
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Implementation of homology based and non-homology based computational methods for the identification and annotation of orphan enzymes: using Mycobacterium tuberculosis H37Rv as a case study.
    Sinha S; Lynn AM; Desai DK
    BMC Bioinformatics; 2020 Oct; 21(1):466. PubMed ID: 33076816
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.