These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
511 related articles for article (PubMed ID: 24464765)
1. 3D printing of composite tissue with complex shape applied to ear regeneration. Lee JS; Hong JM; Jung JW; Shim JH; Oh JH; Cho DW Biofabrication; 2014 Jun; 6(2):024103. PubMed ID: 24464765 [TBL] [Abstract][Full Text] [Related]
2. Three-Dimensional Cell Printing of Large-Volume Tissues: Application to Ear Regeneration. Lee JS; Kim BS; Seo D; Park JH; Cho DW Tissue Eng Part C Methods; 2017 Mar; 23(3):136-145. PubMed ID: 28093047 [TBL] [Abstract][Full Text] [Related]
3. Bioprinted Scaffolds for Cartilage Tissue Engineering. Kang HW; Yoo JJ; Atala A Methods Mol Biol; 2015; 1340():161-9. PubMed ID: 26445837 [TBL] [Abstract][Full Text] [Related]
4. Hybrid printing of mechanically and biologically improved constructs for cartilage tissue engineering applications. Xu T; Binder KW; Albanna MZ; Dice D; Zhao W; Yoo JJ; Atala A Biofabrication; 2013 Mar; 5(1):015001. PubMed ID: 23172542 [TBL] [Abstract][Full Text] [Related]
5. ASC/chondrocyte-laden alginate hydrogel/PCL hybrid scaffold fabricated using 3D printing for auricle regeneration. Jang CH; Koo Y; Kim G Carbohydr Polym; 2020 Nov; 248():116776. PubMed ID: 32919566 [TBL] [Abstract][Full Text] [Related]
6. 3D Printed Chitosan Composite Scaffold for Chondrocytes Differentiation. Sahai N; Gogoi M; Tewari RP Curr Med Imaging; 2021; 17(7):832-842. PubMed ID: 33334294 [TBL] [Abstract][Full Text] [Related]
7. A new method of fabricating a blend scaffold using an indirect three-dimensional printing technique. Jung JW; Lee H; Hong JM; Park JH; Shim JH; Choi TH; Cho DW Biofabrication; 2015 Nov; 7(4):045003. PubMed ID: 26525821 [TBL] [Abstract][Full Text] [Related]
8. Controllable fabrication of hydroxybutyl chitosan/oxidized chondroitin sulfate hydrogels by 3D bioprinting technique for cartilage tissue engineering. Li C; Wang K; Zhou X; Li T; Xu Y; Qiang L; Peng M; Xu Y; Xie L; He C; Wang B; Wang J Biomed Mater; 2019 Jan; 14(2):025006. PubMed ID: 30557856 [TBL] [Abstract][Full Text] [Related]
9. Biomimetic 3D tissue printing for soft tissue regeneration. Pati F; Ha DH; Jang J; Han HH; Rhie JW; Cho DW Biomaterials; 2015 Sep; 62():164-75. PubMed ID: 26056727 [TBL] [Abstract][Full Text] [Related]
10. Cultivation of auricular chondrocytes in poly(ethylene glycol)/poly(ε-caprolactone) hydrogel for tracheal cartilage tissue engineering in a rabbit model. Chang CS; Yang CY; Hsiao HY; Chen L; Chu IM; Cheng MH; Tsao CH Eur Cell Mater; 2018 Jun; 35():350-364. PubMed ID: 29926464 [TBL] [Abstract][Full Text] [Related]
11. Traditional Invasive and Synchrotron-Based Noninvasive Assessments of Three-Dimensional-Printed Hybrid Cartilage Constructs In Situ. Olubamiji AD; Zhu N; Chang T; Nwankwo CK; Izadifar Z; Honaramooz A; Chen X; Eames BF Tissue Eng Part C Methods; 2017 Mar; 23(3):156-168. PubMed ID: 28106517 [TBL] [Abstract][Full Text] [Related]
12. Cartilage Tissue Engineering: Preventing Tissue Scaffold Contraction Using a 3D-Printed Polymeric Cage. Visscher DO; Bos EJ; Peeters M; Kuzmin NV; Groot ML; Helder MN; van Zuijlen PP Tissue Eng Part C Methods; 2016 Jun; 22(6):573-84. PubMed ID: 27089896 [TBL] [Abstract][Full Text] [Related]
13. A novel bioprinting method and system for forming hybrid tissue engineering constructs. Shanjani Y; Pan CC; Elomaa L; Yang Y Biofabrication; 2015 Dec; 7(4):045008. PubMed ID: 26685102 [TBL] [Abstract][Full Text] [Related]
14. 3D Bioprinting Human Chondrocytes with Nanocellulose-Alginate Bioink for Cartilage Tissue Engineering Applications. Markstedt K; Mantas A; Tournier I; Martínez Ávila H; Hägg D; Gatenholm P Biomacromolecules; 2015 May; 16(5):1489-96. PubMed ID: 25806996 [TBL] [Abstract][Full Text] [Related]
15. A comparative study on collagen type I and hyaluronic acid dependent cell behavior for osteochondral tissue bioprinting. Park JY; Choi JC; Shim JH; Lee JS; Park H; Kim SW; Doh J; Cho DW Biofabrication; 2014 Sep; 6(3):035004. PubMed ID: 24758832 [TBL] [Abstract][Full Text] [Related]
16. A 3D bioprinted complex structure for engineering the muscle-tendon unit. Merceron TK; Burt M; Seol YJ; Kang HW; Lee SJ; Yoo JJ; Atala A Biofabrication; 2015 Jun; 7(3):035003. PubMed ID: 26081669 [TBL] [Abstract][Full Text] [Related]
17. Design and fabrication of a hybrid alginate hydrogel/poly(ε-caprolactone) mold for auricular cartilage reconstruction. Visscher DO; Gleadall A; Buskermolen JK; Burla F; Segal J; Koenderink GH; Helder MN; van Zuijlen PPM J Biomed Mater Res B Appl Biomater; 2019 Jul; 107(5):1711-1721. PubMed ID: 30383916 [TBL] [Abstract][Full Text] [Related]
18. 3D bioprinting of urethra with PCL/PLCL blend and dual autologous cells in fibrin hydrogel: An in vitro evaluation of biomimetic mechanical property and cell growth environment. Zhang K; Fu Q; Yoo J; Chen X; Chandra P; Mo X; Song L; Atala A; Zhao W Acta Biomater; 2017 Mar; 50():154-164. PubMed ID: 27940192 [TBL] [Abstract][Full Text] [Related]
19. Analyzing Biological Performance of 3D-Printed, Cell-Impregnated Hybrid Constructs for Cartilage Tissue Engineering. Izadifar Z; Chang T; Kulyk W; Chen X; Eames BF Tissue Eng Part C Methods; 2016 Mar; 22(3):173-88. PubMed ID: 26592915 [TBL] [Abstract][Full Text] [Related]
20. Three-dimensional bioprinting of cell-laden constructs with polycaprolactone protective layers for using various thermoplastic polymers. Kim BS; Jang J; Chae S; Gao G; Kong JS; Ahn M; Cho DW Biofabrication; 2016 Aug; 8(3):035013. PubMed ID: 27550946 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]