These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
286 related articles for article (PubMed ID: 24464875)
1. Forest defoliator outbreaks under climate change: effects on the frequency and severity of outbreaks of five pine insect pests. Haynes KJ; Allstadt AJ; Klimetzek D Glob Chang Biol; 2014 Jun; 20(6):2004-18. PubMed ID: 24464875 [TBL] [Abstract][Full Text] [Related]
2. Importance of Ecological Variables in Explaining Population Dynamics of Three Important Pine Pest Insects. Hentschel R; Möller K; Wenning A; Degenhardt A; Schröder J Front Plant Sci; 2018; 9():1667. PubMed ID: 30483301 [TBL] [Abstract][Full Text] [Related]
3. Microflora of soils under pine forests area affected by gradation of leaf-eating insects. Stremińska MA; Błaszczyk M; Sierpińska A; Kolk A Acta Microbiol Pol; 2002; 51(2):171-82. PubMed ID: 12363077 [TBL] [Abstract][Full Text] [Related]
4. Outbreaks of forest defoliating insects in Japan, 1950-2000. Kamata N; Kamata N Bull Entomol Res; 2002 Apr; 92(2):109-18. PubMed ID: 12020368 [TBL] [Abstract][Full Text] [Related]
5. Climate change and outbreaks of the geometrids Operophtera brumata and Epirrita autumnata in subarctic birch forest: evidence of a recent outbreak range expansion. Jepsen JU; Hagen SB; Ims RA; Yoccoz NG J Anim Ecol; 2008 Mar; 77(2):257-64. PubMed ID: 18070041 [TBL] [Abstract][Full Text] [Related]
6. Effects of forest spatial structure on insect outbreaks: insights from a host-parasitoid model. Hughes JS; Cobbold CA; Haynes K; Dwyer G Am Nat; 2015 May; 185(5):E130-52. PubMed ID: 25905513 [TBL] [Abstract][Full Text] [Related]
7. A Model for Mountain Pine Beetle Outbreaks in an Age-Structured Forest: Predicting Severity and Outbreak-Recovery Cycle Period. Duncan JP; Powell JA; Gordillo LF; Eason J Bull Math Biol; 2015 Jul; 77(7):1256-84. PubMed ID: 25976694 [TBL] [Abstract][Full Text] [Related]
8. Current temporal trends in moth abundance are counter to predicted effects of climate change in an assemblage of subarctic forest moths. Hunter MD; Kozlov MV; Itämies J; Pulliainen E; Bäck J; Kyrö EM; Niemelä P Glob Chang Biol; 2014 Jun; 20(6):1723-37. PubMed ID: 24421221 [TBL] [Abstract][Full Text] [Related]
9. Long-term shifts in the cyclicity of outbreaks of a forest-defoliating insect. Allstadt AJ; Haynes KJ; Liebhold AM; Johnson DM Oecologia; 2013 May; 172(1):141-51. PubMed ID: 23073635 [TBL] [Abstract][Full Text] [Related]
10. Climate and weather influences on spatial temporal patterns of mountain pine beetle populations in Washington and Oregon. Preisler HK; Hicke JA; Ager AA; Hayes JL Ecology; 2012 Nov; 93(11):2421-34. PubMed ID: 23236913 [TBL] [Abstract][Full Text] [Related]
11. Impact of sawfly defoliation on growth of Scots pine Pinus sylvestris (Pinaceae) and associated economic losses. Lyytikäinen-Saarenmaa P; Lyytikäinen-Saarenmaa P; Tomppo E Bull Entomol Res; 2002 Apr; 92(2):137-40. PubMed ID: 12020371 [TBL] [Abstract][Full Text] [Related]
12. Relative importance of climate and mountain pine beetle outbreaks on the occurrence of large wildfires in the western USA. Mietkiewicz N; Kulakowski D Ecol Appl; 2016 Dec; 26(8):2523-2535. PubMed ID: 27787956 [TBL] [Abstract][Full Text] [Related]
13. Replacement of a dominant viral pathogen by a fungal pathogen does not alter the collapse of a regional forest insect outbreak. Hajek AE; Tobin PC; Haynes KJ Oecologia; 2015 Mar; 177(3):785-797. PubMed ID: 25510217 [TBL] [Abstract][Full Text] [Related]
14. Altered dynamics of forest recovery under a changing climate. Anderson-Teixeira KJ; Miller AD; Mohan JE; Hudiburg TW; Duval BD; Delucia EH Glob Chang Biol; 2013 Jul; 19(7):2001-21. PubMed ID: 23529980 [TBL] [Abstract][Full Text] [Related]
15. Mountain pine beetle and forest carbon feedback to climate change. Kurz WA; Dymond CC; Stinson G; Rampley GJ; Neilson ET; Carroll AL; Ebata T; Safranyik L Nature; 2008 Apr; 452(7190):987-90. PubMed ID: 18432244 [TBL] [Abstract][Full Text] [Related]
16. Quantifying the past and future impact of climate on outbreak patterns of bank voles (Myodes glareolus). Imholt C; Reil D; Eccard JA; Jacob D; Hempelmann N; Jacob J Pest Manag Sci; 2015 Feb; 71(2):166-72. PubMed ID: 24889216 [TBL] [Abstract][Full Text] [Related]
17. Radial Growth and Wood Density Reflect the Impacts and Susceptibility to Defoliation by Gypsy Moth and Climate in Radiata Pine. Camarero JJ; Álvarez-Taboada F; Hevia A; Castedo-Dorado F Front Plant Sci; 2018; 9():1582. PubMed ID: 30429865 [TBL] [Abstract][Full Text] [Related]
18. Population dynamics in changing environments: the case of an eruptive forest pest species. Kausrud K; Okland B; Skarpaas O; Grégoire JC; Erbilgin N; Stenseth NC Biol Rev Camb Philos Soc; 2012 Feb; 87(1):34-51. PubMed ID: 21557798 [TBL] [Abstract][Full Text] [Related]
19. Spatial genetic structure of the mountain pine beetle (Dendroctonus ponderosae) outbreak in western Canada: historical patterns and contemporary dispersal. Gayathri Samarasekera GD; Bartell NV; Lindgren BS; Cooke JE; Davis CS; James PM; Coltman DW; Mock KE; Murray BW Mol Ecol; 2012 Jun; 21(12):2931-48. PubMed ID: 22554298 [TBL] [Abstract][Full Text] [Related]
20. Numerical and functional responses of forest bats to a major insect pest in pine plantations. Charbonnier Y; Barbaro L; Theillout A; Jactel H PLoS One; 2014; 9(10):e109488. PubMed ID: 25285523 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]