These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 24464945)

  • 1. Identifying active functionalities on few-layered graphene catalysts for oxidative dehydrogenation of isobutane.
    Dathar GK; Tsai YT; Gierszal K; Xu Y; Liang C; Rondinone AJ; Overbury SH; Schwartz V
    ChemSusChem; 2014 Feb; 7(2):483-91. PubMed ID: 24464945
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxygen-functionalized few-layer graphene sheets as active catalysts for oxidative dehydrogenation reactions.
    Schwartz V; Fu W; Tsai YT; Meyer HM; Rondinone AJ; Chen J; Wu Z; Overbury SH; Liang C
    ChemSusChem; 2013 May; 6(5):840-6. PubMed ID: 23471876
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An Efficient Metal-Free Catalyst for Oxidative Dehydrogenation Reaction: Activated Carbon Decorated with Few-Layer Graphene.
    Zhang Y; Diao J; Rong J; Zhang J; Xie J; Huang F; Jia Z; Liu H; Su DS
    ChemSusChem; 2018 Feb; 11(3):536-541. PubMed ID: 29292853
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Facile and Efficient Method to Fabricate Highly Selective Nanocarbon Catalysts for Oxidative Dehydrogenation.
    Zhang Y; Wang J; Rong J; Diao J; Zhang J; Shi C; Liu H; Su D
    ChemSusChem; 2017 Jan; 10(2):353-358. PubMed ID: 28000383
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxidative purification of carbon nanotubes and its impact on catalytic performance in oxidative dehydrogenation reactions.
    Rinaldi A; Zhang J; Frank B; Su DS; Abd Hamid SB; Schlögl R
    ChemSusChem; 2010 Feb; 3(2):254-60. PubMed ID: 20112335
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Site-dependent catalytic activity of graphene oxides towards oxidative dehydrogenation of propane.
    Tang S; Cao Z
    Phys Chem Chem Phys; 2012 Dec; 14(48):16558-65. PubMed ID: 22801590
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxidative dehydrogenation reaction of short alkanes on nanostructured carbon catalysts: a computational account.
    Sun X; Han P; Li B; Mao S; Liu T; Ali S; Lian Z; Su D
    Chem Commun (Camb); 2018 Jan; 54(8):864-875. PubMed ID: 29322143
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nitrogen-doped graphene-rich catalysts derived from heteroatom polymers for oxygen reduction in nonaqueous lithium-O2 battery cathodes.
    Wu G; Mack NH; Gao W; Ma S; Zhong R; Han J; Baldwin JK; Zelenay P
    ACS Nano; 2012 Nov; 6(11):9764-76. PubMed ID: 23036092
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phosphate-modified carbon nanotubes in the oxidative dehydrogenation of isopentanes.
    Huang R; Liu HY; Zhang BS; Sun XY; Liang CH; Su DS; Zong BN; Rong JF
    ChemSusChem; 2014 Dec; 7(12):3476-82. PubMed ID: 25213438
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxidative dehydrogenation of light alkanes to olefins on metal-free catalysts.
    Sheng J; Yan B; Lu WD; Qiu B; Gao XQ; Wang D; Lu AH
    Chem Soc Rev; 2021 Feb; 50(2):1438-1468. PubMed ID: 33300532
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Progress in selective oxidative dehydrogenation of light alkanes to olefins promoted by boron nitride catalysts.
    Shi L; Wang Y; Yan B; Song W; Shao D; Lu AH
    Chem Commun (Camb); 2018 Sep; 54(78):10936-10946. PubMed ID: 30124691
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly hydrogenated graphene via active hydrogen reduction of graphene oxide in the aqueous phase at room temperature.
    Sofer Z; Jankovský O; Šimek P; Soferová L; Sedmidubský D; Pumera M
    Nanoscale; 2014 Feb; 6(4):2153-60. PubMed ID: 24366534
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sulfur and nitrogen co-doped, few-layered graphene oxide as a highly efficient electrocatalyst for the oxygen-reduction reaction.
    Xu J; Dong G; Jin C; Huang M; Guan L
    ChemSusChem; 2013 Mar; 6(3):493-9. PubMed ID: 23404829
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Serendipity in Catalysis Research: Boron-Based Materials for Alkane Oxidative Dehydrogenation.
    Venegas JM; McDermott WP; Hermans I
    Acc Chem Res; 2018 Oct; 51(10):2556-2564. PubMed ID: 30285416
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Excellent catalytic effects of highly crumpled graphene nanosheets on hydrogenation/dehydrogenation of magnesium hydride.
    Liu G; Wang Y; Xu C; Qiu F; An C; Li L; Jiao L; Yuan H
    Nanoscale; 2013 Feb; 5(3):1074-81. PubMed ID: 23254449
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Can Si-doped graphene activate or dissociate O2 molecule?
    Chen Y; Yang XC; Liu YJ; Zhao JX; Cai QH; Wang XZ
    J Mol Graph Model; 2013 Feb; 39():126-32. PubMed ID: 23261882
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Boron nitride materials as emerging catalysts for oxidative dehydrogenation of light alkanes.
    Xu C; Ge C; Sun D; Fan Y; Wang XB
    Nanotechnology; 2022 Aug; 33(43):. PubMed ID: 35760042
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Catalytic hydrogenation of CO
    Esrafili MD; Sharifi F; Dinparast L
    J Mol Graph Model; 2017 Oct; 77():143-152. PubMed ID: 28858642
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Open-cage fullerene-like graphitic carbons as catalysts for oxidative dehydrogenation of isobutane.
    Liang C; Xie H; Schwartz V; Howe J; Dai S; Overbury SH
    J Am Chem Soc; 2009 Jun; 131(22):7735-41. PubMed ID: 19449866
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A density function theory study on the NO reduction on nitrogen doped graphene.
    Zhang X; Lu Z; Tang Y; Fu Z; Ma D; Yang Z
    Phys Chem Chem Phys; 2014 Oct; 16(38):20561-9. PubMed ID: 25156103
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.