These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 24464986)

  • 1. Response of filopodia and lamellipodia to surface topography on micropatterned silk fibroin films.
    You R; Li X; Liu Y; Liu G; Lu S; Li M
    J Biomed Mater Res A; 2014 Dec; 102(12):4206-12. PubMed ID: 24464986
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Directional cell elongation through filopodia-steered lamellipodial extension on patterned silk fibroin films.
    You R; Li X; Luo Z; Qu J; Li M
    Biointerphases; 2015 Mar; 10(1):011005. PubMed ID: 25743615
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lamellipodia nucleation by filopodia depends on integrin occupancy and downstream Rac1 signaling.
    Guillou H; Depraz-Depland A; Planus E; Vianay B; Chaussy J; Grichine A; Albigès-Rizo C; Block MR
    Exp Cell Res; 2008 Feb; 314(3):478-88. PubMed ID: 18067889
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Topographic cues reveal filopodia-mediated cell locomotion in 3D microenvironment.
    Li X; Zhang Q; Yan S; Li M; You R
    Biointerphases; 2020 May; 15(3):031001. PubMed ID: 32366106
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Attachment and growth of human bone marrow derived mesenchymal stem cells on regenerated antheraea pernyi silk fibroin films.
    Luan XY; Wang Y; Duan X; Duan QY; Li MZ; Lu SZ; Zhang HX; Zhang XG
    Biomed Mater; 2006 Dec; 1(4):181-7. PubMed ID: 18458403
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Implication of silk film RGD availability and surface roughness on cytoskeletal organization and proliferation of primary rat bone marrow cells.
    Mandal BB; Das S; Choudhury K; Kundu SC
    Tissue Eng Part A; 2010 Jul; 16(7):2391-403. PubMed ID: 20214452
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preparation of uniaxial multichannel silk fibroin scaffolds for guiding primary neurons.
    Zhang Q; Zhao Y; Yan S; Yang Y; Zhao H; Li M; Lu S; Kaplan DL
    Acta Biomater; 2012 Jul; 8(7):2628-38. PubMed ID: 22465574
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chondrogenic differentiation of rat MSCs on porous scaffolds of silk fibroin/chitosan blends.
    Bhardwaj N; Kundu SC
    Biomaterials; 2012 Apr; 33(10):2848-57. PubMed ID: 22261099
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NCAM affects directional lamellipodia formation of BMSCs via β1 integrin signal-mediated cofilin activity.
    Bi JJ; Li J; Cheng BF; Yang HJ; Ding QQ; Wang RF; Chen SJ; Feng ZW
    Mol Cell Biochem; 2017 Nov; 435(1-2):175-183. PubMed ID: 28536952
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of filopodia in the recognition of nanotopographies.
    Albuschies J; Vogel V
    Sci Rep; 2013; 3():1658. PubMed ID: 23584574
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Directing osteogenesis of stem cells with hydroxyapatite precipitated electrospun eri-tasar silk fibroin nanofibrous scaffold.
    Panda N; Bissoyi A; Pramanik K; Biswas A
    J Biomater Sci Polym Ed; 2014; 25(13):1440-57. PubMed ID: 25090157
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effects of tetracycline-loaded silk fibroin membrane on proliferation and osteogenic potential of mesenchymal stem cells.
    Jin SH; Kweon H; Park JB; Kim CH
    J Surg Res; 2014 Dec; 192(2):e1-9. PubMed ID: 25291963
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Non-bioengineered silk gland fibroin micromolded matrices to study cell-surface interactions.
    Mandal BB; Das T; Kundu SC
    Biomed Microdevices; 2009 Apr; 11(2):467-76. PubMed ID: 19058012
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Guiding the behaviors of human umbilical vein endothelial cells with patterned silk fibroin films.
    Du X; Wang Y; Yuan L; Weng Y; Chen G; Hu Z
    Colloids Surf B Biointerfaces; 2014 Oct; 122():79-84. PubMed ID: 25016547
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface properties of silk fibroin films and their interaction with fibroblasts.
    Servoli E; Maniglio D; Motta A; Predazzer R; Migliaresi C
    Macromol Biosci; 2005 Dec; 5(12):1175-83. PubMed ID: 16315185
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Observation of vascularization and protein after implanting porous silk fibroin films in rat.
    Sun Z; Zhou Y; Zhou J
    Biomed Mater Eng; 2015; 25(4):405-13. PubMed ID: 26407202
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Osteogenic differentiation of bone marrow mesenchymal stem cells on the collagen/silk fibroin bi-template-induced biomimetic bone substitutes.
    Wang J; Yang Q; Mao C; Zhang S
    J Biomed Mater Res A; 2012 Nov; 100(11):2929-38. PubMed ID: 22700033
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of the properties of silk fibroin films from the non-mulberry silkworm Samia cynthia ricini for biomaterial design.
    Mai-ngam K; Boonkitpattarakul K; Jaipaew J; Mai-ngam B
    J Biomater Sci Polym Ed; 2011; 22(15):2001-22. PubMed ID: 21029516
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effects of pore architecture in silk fibroin scaffolds on the growth and differentiation of mesenchymal stem cells expressing BMP7.
    Zhang Y; Fan W; Ma Z; Wu C; Fang W; Liu G; Xiao Y
    Acta Biomater; 2010 Aug; 6(8):3021-8. PubMed ID: 20188872
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanical fragmentation and transportation of calcium phosphate substrate by filopodia and lamellipodia in a mature osteoclast.
    Nagafusa T; Hoshino H; Sakurai T; Terakawa S; Nagano A
    Cell Biol Int; 2007 Oct; 31(10):1150-9. PubMed ID: 17498977
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.