These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 24465077)

  • 1. Structural Consequences of Chromophore Formation and Exploration of Conserved Lid Residues amongst Naturally Occurring Fluorescent Proteins.
    Zimmer MH; Li B; Shahid RS; Peshkepija P; Zimmer M
    Chem Phys; 2014 Jan; 429():5-11. PubMed ID: 24465077
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Function and structure of GFP-like proteins in the protein data bank.
    Ong WJ; Alvarez S; Leroux IE; Shahid RS; Samma AA; Peshkepija P; Morgan AL; Mulcahy S; Zimmer M
    Mol Biosyst; 2011 Apr; 7(4):984-92. PubMed ID: 21298165
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Why Are Gly31, Gly33, and Gly35 Highly Conserved in All Fluorescent Proteins?
    Nwafor J; Salguero C; Welcome F; Durmus S; Glasser RN; Zimmer M; Schneider TL
    Biochemistry; 2021 Dec; 60(49):3762-3770. PubMed ID: 34806355
    [TBL] [Abstract][Full Text] [Related]  

  • 4. GFP Loss-of-Function Mutations in Arabidopsis thaliana.
    Fu JL; Kanno T; Liang SC; Matzke AJ; Matzke M
    G3 (Bethesda); 2015 Jul; 5(9):1849-55. PubMed ID: 26153075
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chromophore packing leads to hysteresis in GFP.
    Andrews BT; Roy M; Jennings PA
    J Mol Biol; 2009 Sep; 392(1):218-27. PubMed ID: 19577576
    [TBL] [Abstract][Full Text] [Related]  

  • 6. AlphaFold2 and RoseTTAFold predict posttranslational modifications. Chromophore formation in GFP-like proteins.
    Hartley SM; Tiernan KA; Ahmetaj G; Cretu A; Zhuang Y; Zimmer M
    PLoS One; 2022; 17(6):e0267560. PubMed ID: 35709156
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular modeling of green fluorescent protein: structural effects of chromophore deprotonation.
    Patnaik SS; Trohalaki S; Pachter R
    Biopolymers; 2004 Dec; 75(6):441-52. PubMed ID: 15497152
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Refined crystal structures of red and green fluorescent proteins from the button polyp Zoanthus.
    Pletneva N; Pletnev V; Tikhonova T; Pakhomov AA; Popov V; Martynov VI; Wlodawer A; Dauter Z; Pletnev S
    Acta Crystallogr D Biol Crystallogr; 2007 Oct; 63(Pt 10):1082-93. PubMed ID: 17881826
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The 2.1A crystal structure of copGFP, a representative member of the copepod clade within the green fluorescent protein superfamily.
    Wilmann PG; Battad J; Petersen J; Wilce MC; Dove S; Devenish RJ; Prescott M; Rossjohn J
    J Mol Biol; 2006 Jun; 359(4):890-900. PubMed ID: 16697009
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Water Diffusion In And Out Of The β-Barrel Of GFP and The Fast Maturing Fluorescent Protein, TurboGFP.
    Li B; Shahid R; Peshkepija P; Zimmer M
    Chem Phys; 2012 Jan; 392(1):143-148. PubMed ID: 22582003
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Residue-Specific Exchange of Proline by Proline Analogs in Fluorescent Proteins: How "Molecular Surgery" of the Backbone Affects Folding and Stability.
    Thi To TM; Kubyshkin V; Schmitt FJ; Budisa N; Friedrich T
    J Vis Exp; 2022 Feb; (180):. PubMed ID: 35188129
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Role of the Tight-Turn, Broken Hydrogen Bonding, Glu222 and Arg96 in the Post-translational Green Fluorescent Protein Chromophore Formation.
    Lemay NP; Morgan AL; Archer EJ; Dickson LA; Megley CM; Zimmer M
    Chem Phys; 2008 Jun; 348(1-3):152-160. PubMed ID: 19079566
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Beta-barrel scaffold of fluorescent proteins: folding, stability and role in chromophore formation.
    Stepanenko OV; Stepanenko OV; Kuznetsova IM; Verkhusha VV; Turoverov KK
    Int Rev Cell Mol Biol; 2013; 302():221-78. PubMed ID: 23351712
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Defining the role of arginine 96 in green fluorescent protein fluorophore biosynthesis.
    Wood TI; Barondeau DP; Hitomi C; Kassmann CJ; Tainer JA; Getzoff ED
    Biochemistry; 2005 Dec; 44(49):16211-20. PubMed ID: 16331981
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conserved residues of the putative L6 loop of Escherichia coli BamA play a critical role in the assembly of β-barrel outer membrane proteins, including that of BamA itself.
    Leonard-Rivera M; Misra R
    J Bacteriol; 2012 Sep; 194(17):4662-8. PubMed ID: 22753067
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystal structure of enhanced green fluorescent protein to 1.35 Å resolution reveals alternative conformations for Glu222.
    Arpino JA; Rizkallah PJ; Jones DD
    PLoS One; 2012; 7(10):e47132. PubMed ID: 23077555
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The dual-basin landscape in GFP folding.
    Andrews BT; Gosavi S; Finke JM; Onuchic JN; Jennings PA
    Proc Natl Acad Sci U S A; 2008 Aug; 105(34):12283-8. PubMed ID: 18713871
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A conserved tryptophan (W91) at the barrel-lid junction modulates the packing and stability of Kunitz (STI) family of inhibitors.
    Majumder S; Khamrui S; Banerjee R; Bhowmik P; Sen U
    Biochim Biophys Acta; 2015 Jan; 1854(1):55-64. PubMed ID: 25448016
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Collapse and recovery of green fluorescent protein chromophore emission through topological effects.
    Tolbert LM; Baldridge A; Kowalik J; Solntsev KM
    Acc Chem Res; 2012 Feb; 45(2):171-81. PubMed ID: 21861536
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The 2.1A crystal structure of the far-red fluorescent protein HcRed: inherent conformational flexibility of the chromophore.
    Wilmann PG; Petersen J; Pettikiriarachchi A; Buckle AM; Smith SC; Olsen S; Perugini MA; Devenish RJ; Prescott M; Rossjohn J
    J Mol Biol; 2005 May; 349(1):223-37. PubMed ID: 15876379
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.