BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 24465524)

  • 1. Effects of marine and freshwater macroalgae on in vitro total gas and methane production.
    Machado L; Magnusson M; Paul NA; de Nys R; Tomkins N
    PLoS One; 2014; 9(1):e85289. PubMed ID: 24465524
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of gas composition in headspace and bicarbonate concentrations in media on gas and methane production, degradability, and rumen fermentation using in vitro gas production techniques.
    Patra AK; Yu Z
    J Dairy Sci; 2013 Jul; 96(7):4592-600. PubMed ID: 23684023
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Screening macroalgae for mitigation of enteric methane in vitro.
    Wasson DE; Stefenoni H; Cueva SF; Lage C; Räisänen SE; Melgar A; Fetter M; Hennessy M; Narayan K; Indugu N; Pitta D; Yarish C; Hristov AN
    Sci Rep; 2023 Jun; 13(1):9835. PubMed ID: 37330586
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic parameters of plasma and ruminal volatile fatty acids in sheep fed alfalfa pellets and genetic correlations with enteric methane emissions1.
    Jonker A; Hickey SM; McEwan JC; Rowe SJ; Janssen PH; MacLean S; Sandoval E; Lewis S; Kjestrup H; Molano G; Agnew M; Young EA; Dodds KG; Knowler K; Pinares-Patiño CS
    J Anim Sci; 2019 Jul; 97(7):2711-2724. PubMed ID: 31212318
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Potential of guava leaves for mitigating methane emissions and modulating ruminal fermentation characteristics and nutrient degradability.
    Al-Sagheer AA; Elwakeel EA; Ahmed MG; Sallam SMA
    Environ Sci Pollut Res Int; 2018 Nov; 25(31):31450-31458. PubMed ID: 30203345
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of illite supplementation on in vitro and in vivo rumen fermentation, microbial population and methane emission of Hanwoo steers fed high concentrate diets.
    Biswas AA; Lee SS; Mamuad LL; Kim SH; Choi YJ; Lee C; Lee K; Bae GS; Lee SS
    Anim Sci J; 2018 Jan; 89(1):114-121. PubMed ID: 28960611
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of different barley and oat varieties on methane production, digestibility, and fermentation pattern in vitro.
    Fant P; Ramin M; Jaakkola S; Grimberg Å; Carlsson AS; Huhtanen P
    J Dairy Sci; 2020 Feb; 103(2):1404-1415. PubMed ID: 31785868
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Between-cow variation in digestion and rumen fermentation variables associated with methane production.
    Cabezas-Garcia EH; Krizsan SJ; Shingfield KJ; Huhtanen P
    J Dairy Sci; 2017 Jun; 100(6):4409-4424. PubMed ID: 28390728
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of the macroalga Asparagopsis taxiformis and oregano leaves on methane emission, rumen fermentation, and lactational performance of dairy cows.
    Stefenoni HA; Räisänen SE; Cueva SF; Wasson DE; Lage CFA; Melgar A; Fetter ME; Smith P; Hennessy M; Vecchiarelli B; Bender J; Pitta D; Cantrell CL; Yarish C; Hristov AN
    J Dairy Sci; 2021 Apr; 104(4):4157-4173. PubMed ID: 33516546
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Changes in in vitro gas and methane production from rumen fluid from dairy cows during adaptation to feed additives in vivo.
    Klop G; van Laar-van Schuppen S; Pellikaan WF; Hendriks WH; Bannink A; Dijkstra J
    Animal; 2017 Apr; 11(4):591-599. PubMed ID: 27748233
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of the macroalgae Asparagopsis taxiformis on methane production and rumen microbiome assemblage.
    Roque BM; Brooke CG; Ladau J; Polley T; Marsh LJ; Najafi N; Pandey P; Singh L; Kinley R; Salwen JK; Eloe-Fadrosh E; Kebreab E; Hess M
    Anim Microbiome; 2019 Feb; 1(1):3. PubMed ID: 33499933
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluating the effect of phenolic compounds as hydrogen acceptors when ruminal methanogenesis is inhibited in vitro - Part 2. Dairy goats.
    Romero P; Huang R; Jiménez E; Palma-Hidalgo JM; Ungerfeld EM; Popova M; Morgavi DP; Belanche A; Yáñez-Ruiz DR
    Animal; 2023 May; 17(5):100789. PubMed ID: 37087998
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diet supplementation with cinnamon oil, cinnamaldehyde, or monensin does not reduce enteric methane production of dairy cows.
    Benchaar C
    Animal; 2016 Mar; 10(3):418-25. PubMed ID: 26888487
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel oxidising feed additives reduce in vitro methane emissions using the rumen simulation technique.
    O'Donnell C; Thorn C; Roskam E; Friel R; Kirwan SF; Waters SM; O'Flaherty V
    Sci Total Environ; 2024 May; 926():171808. PubMed ID: 38508273
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of three methane mitigation agents on parameters of kinetics of total and hydrogen gas production, ruminal fermentation and hydrogen balance using in vitro technique.
    Wang M; Wang R; Yang S; Deng JP; Tang SX; Tan ZL
    Anim Sci J; 2016 Feb; 87(2):224-32. PubMed ID: 26223853
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of seaweed extracts on in vitro rumen fermentation characteristics, methane production, and microbial abundance.
    Choi Y; Lee SJ; Kim HS; Eom JS; Jo SU; Guan LL; Seo J; Kim H; Lee SS; Lee SS
    Sci Rep; 2021 Dec; 11(1):24092. PubMed ID: 34916562
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Linseed oil and DGAT1 K232A polymorphism: Effects on methane emission, energy and nitrogen metabolism, lactation performance, ruminal fermentation, and rumen microbial composition of Holstein-Friesian cows.
    van Gastelen S; Visker MHPW; Edwards JE; Antunes-Fernandes EC; Hettinga KA; Alferink SJJ; Hendriks WH; Bovenhuis H; Smidt H; Dijkstra J
    J Dairy Sci; 2017 Nov; 100(11):8939-8957. PubMed ID: 28918153
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reducing methane production by supplementation of Terminalia chebula RETZ. containing tannins and saponins.
    Anantasook N; Wanapat M; Gunun P; Cherdthong A
    Anim Sci J; 2016 Jun; 87(6):783-90. PubMed ID: 27255184
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temporal dynamics of volatile fatty acids profile, methane production, and prokaryotic community in an
    Dhakal R; Neves ALA; Sapkota R; Khanal P; Ellegaard-Jensen L; Winding A; Hansen HH
    Front Microbiol; 2024; 15():1271599. PubMed ID: 38444805
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of hydrolyzable tannin with or without condensed tannin on methane emissions, nitrogen use, and performance of beef cattle fed a high-forage diet.
    Aboagye IA; Oba M; Castillo AR; Koenig KM; Iwaasa AD; Beauchemin KA
    J Anim Sci; 2018 Dec; 96(12):5276-5286. PubMed ID: 30169710
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.