These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 24465576)

  • 1. Do pioneer cells exist?
    Simpson MJ; Haridas P; McElwain DL
    PLoS One; 2014; 9(1):e85488. PubMed ID: 24465576
    [TBL] [Abstract][Full Text] [Related]  

  • 2. How much information can be obtained from tracking the position of the leading edge in a scratch assay?
    Johnston ST; Simpson MJ; McElwain DL
    J R Soc Interface; 2014 Aug; 11(97):20140325. PubMed ID: 24850906
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sensitivity of edge detection methods for quantifying cell migration assays.
    Treloar KK; Simpson MJ
    PLoS One; 2013; 8(6):e67389. PubMed ID: 23826283
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantifying uncertainty in parameter estimates for stochastic models of collective cell spreading using approximate Bayesian computation.
    Vo BN; Drovandi CC; Pettitt AN; Simpson MJ
    Math Biosci; 2015 May; 263():133-42. PubMed ID: 25747415
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantifying rates of cell migration and cell proliferation in co-culture barrier assays reveals how skin and melanoma cells interact during melanoma spreading and invasion.
    Haridas P; Penington CJ; McGovern JA; McElwain DLS; Simpson MJ
    J Theor Biol; 2017 Jun; 423():13-25. PubMed ID: 28433392
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantifying the roles of cell motility and cell proliferation in a circular barrier assay.
    Simpson MJ; Treloar KK; Binder BJ; Haridas P; Manton KJ; Leavesley DI; McElwain DL; Baker RE
    J R Soc Interface; 2013 May; 10(82):20130007. PubMed ID: 23427098
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Discrete and Continuum Approximations for Collective Cell Migration in a Scratch Assay with Cell Size Dynamics.
    Matsiaka OM; Penington CJ; Baker RE; Simpson MJ
    Bull Math Biol; 2018 Apr; 80(4):738-757. PubMed ID: 29372496
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Are in vitro estimates of cell diffusivity and cell proliferation rate sensitive to assay geometry?
    Treloar KK; Simpson MJ; McElwain DL; Baker RE
    J Theor Biol; 2014 Sep; 356():71-84. PubMed ID: 24787651
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental and modelling investigation of monolayer development with clustering.
    Simpson MJ; Binder BJ; Haridas P; Wood BK; Treloar KK; McElwain DL; Baker RE
    Bull Math Biol; 2013 May; 75(5):871-89. PubMed ID: 23584951
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interpreting scratch assays using pair density dynamics and approximate Bayesian computation.
    Johnston ST; Simpson MJ; McElwain DL; Binder BJ; Ross JV
    Open Biol; 2014 Sep; 4(9):140097. PubMed ID: 25209532
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multi-scale modeling of a wound-healing cell migration assay.
    Cai AQ; Landman KA; Hughes BD
    J Theor Biol; 2007 Apr; 245(3):576-94. PubMed ID: 17188306
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reproducibility of scratch assays is affected by the initial degree of confluence: Experiments, modelling and model selection.
    Jin W; Shah ET; Penington CJ; McCue SW; Chopin LK; Simpson MJ
    J Theor Biol; 2016 Feb; 390():136-45. PubMed ID: 26646767
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimating cell diffusivity and cell proliferation rate by interpreting IncuCyte ZOOM™ assay data using the Fisher-Kolmogorov model.
    Johnston ST; Shah ET; Chopin LK; Sean McElwain DL; Simpson MJ
    BMC Syst Biol; 2015 Jul; 9():38. PubMed ID: 26188761
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Travelling waves for a velocity-jump model of cell migration and proliferation.
    Simpson MJ; Foy BH; McCue SW
    Math Biosci; 2013 Aug; 244(2):98-106. PubMed ID: 23665453
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Continuum descriptions of spatial spreading for heterogeneous cell populations: Theory and experiment.
    Matsiaka OM; Baker RE; Simpson MJ
    J Theor Biol; 2019 Dec; 482():109997. PubMed ID: 31491498
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantifying the effect of experimental design choices for in vitro scratch assays.
    Johnston ST; Ross JV; Binder BJ; Sean McElwain DL; Haridas P; Simpson MJ
    J Theor Biol; 2016 Jul; 400():19-31. PubMed ID: 27086040
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using Experimental Data and Information Criteria to Guide Model Selection for Reaction-Diffusion Problems in Mathematical Biology.
    Warne DJ; Baker RE; Simpson MJ
    Bull Math Biol; 2019 Jun; 81(6):1760-1804. PubMed ID: 30815837
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparing methods for modelling spreading cell fronts.
    Markham DC; Simpson MJ; Maini PK; Gaffney EA; Baker RE
    J Theor Biol; 2014 Jul; 353():95-103. PubMed ID: 24613725
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A simple and accurate rule-based modeling framework for simulation of autocrine/paracrine stimulation of glioblastoma cell motility and proliferation by L1CAM in 2-D culture.
    Caccavale J; Fiumara D; Stapf M; Sweitzer L; Anderson HJ; Gorky J; Dhurjati P; Galileo DS
    BMC Syst Biol; 2017 Dec; 11(1):124. PubMed ID: 29228953
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Scratch assay microscopy: A reaction-diffusion equation approach for common instruments and data.
    Gnerucci A; Faraoni P; Sereni E; Ranaldi F
    Math Biosci; 2020 Dec; 330():108482. PubMed ID: 33011189
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.