These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 24465601)

  • 1. Cognitive loading affects motor awareness and movement kinematics but not locomotor trajectories during goal-directed walking in a virtual reality environment.
    Kannape OA; Barré A; Aminian K; Blanke O
    PLoS One; 2014; 9(1):e85560. PubMed ID: 24465601
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Real-time modulation of visual feedback on human full-body movements in a virtual mirror: development and proof-of-concept.
    Roosink M; Robitaille N; McFadyen BJ; Hébert LJ; Jackson PL; Bouyer LJ; Mercier C
    J Neuroeng Rehabil; 2015 Jan; 12(1):2. PubMed ID: 25558785
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gait adaptation to visual kinematic perturbations using a real-time closed-loop brain-computer interface to a virtual reality avatar.
    Luu TP; He Y; Brown S; Nakagame S; Contreras-Vidal JL
    J Neural Eng; 2016 Jun; 13(3):036006. PubMed ID: 27064824
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel walking speed estimation scheme and its application to treadmill control for gait rehabilitation.
    Yoon J; Park HS; Damiano DL
    J Neuroeng Rehabil; 2012 Aug; 9():62. PubMed ID: 22929169
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional neuroimaging of the interference between working memory and the control of periodic ankle movement timing.
    Johannsen L; Li KZ; Chechlacz M; Bibi A; Kourtzi Z; Wing AM
    Neuropsychologia; 2013 Sep; 51(11):2142-53. PubMed ID: 23876923
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analyses of Gait Parameters of Younger and Older Adults During (Non-)Isometric Virtual Walking.
    Janeh O; Bruder G; Steinicke F; Gulberti A; Poetter-Nerger M
    IEEE Trans Vis Comput Graph; 2018 Oct; 24(10):2663-2674. PubMed ID: 29990158
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Visual control of walking velocity.
    François M; Morice AH; Bootsma RJ; Montagne G
    Neurosci Res; 2011 Jun; 70(2):214-9. PubMed ID: 21345354
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Augmenting locomotor perception by remapping tactile foot sensation to the back.
    Jouybari AF; Ferraroli N; Bouri M; Alaoui SH; Kannape OA; Blanke O
    J Neuroeng Rehabil; 2024 Apr; 21(1):65. PubMed ID: 38678291
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Virtually-induced threat in Parkinson's: Dopaminergic interactions between anxiety and sensory-perceptual processing while walking.
    Ehgoetz Martens KA; Ellard CG; Almeida QJ
    Neuropsychologia; 2015 Dec; 79(Pt B):322-31. PubMed ID: 26004056
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Altering attention to split-belt walking increases the generalization of motor memories across walking contexts.
    Mariscal DM; Iturralde PA; Torres-Oviedo G
    J Neurophysiol; 2020 May; 123(5):1838-1848. PubMed ID: 32233897
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Limb movements of another pedestrian affect crossing distance but not path planning during virtual over ground circumvention.
    Fiset F; Lamontagne A; McFadyen BJ
    Neurosci Lett; 2020 Sep; 736():135278. PubMed ID: 32721429
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Altered steering strategies for goal-directed locomotion in stroke.
    Aburub AS; Lamontagne A
    J Neuroeng Rehabil; 2013 Jul; 10():80. PubMed ID: 23875969
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Walking (and talking) the plank: dual-task performance costs in a virtual balance-threatening environment.
    Raffegeau TE; Brinkerhoff SA; Clark M; McBride AD; Mark Williams A; Fino PC; Fawver B
    Exp Brain Res; 2024 May; 242(5):1237-1250. PubMed ID: 38536454
    [TBL] [Abstract][Full Text] [Related]  

  • 14. American Society of Biomechanics Journal of Biomechanics Award 2018: Adaptive motor planning of center-of-mass trajectory during goal-directed walking in novel environments.
    Bucklin MA; Wu M; Brown G; Gordon KE
    J Biomech; 2019 Sep; 94():5-12. PubMed ID: 31416592
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Visuomotor gain distortion alters online motor performance and enhances primary motor cortex excitability in patients with stroke.
    Bagce HF; Saleh S; Adamovich SV; Tunik E
    Neuromodulation; 2012 Jul; 15(4):361-6. PubMed ID: 22672345
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of anticipatory orienting strategies and trajectory formation in goal-oriented locomotion.
    Belmonti V; Cioni G; Berthoz A
    Exp Brain Res; 2013 May; 227(1):131-47. PubMed ID: 23588420
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gait adaptations during overground walking and multidirectional oscillations of the visual field in a virtual reality headset.
    Martelli D; Xia B; Prado A; Agrawal SK
    Gait Posture; 2019 Jan; 67():251-256. PubMed ID: 30388606
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neural decoding of treadmill walking from noninvasive electroencephalographic signals.
    Presacco A; Goodman R; Forrester L; Contreras-Vidal JL
    J Neurophysiol; 2011 Oct; 106(4):1875-87. PubMed ID: 21768121
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gait adaptations to simultaneous cognitive and mechanical constraints.
    Al-Yahya E; Dawes H; Collett J; Howells K; Izadi H; Wade DT; Cockburn J
    Exp Brain Res; 2009 Oct; 199(1):39-48. PubMed ID: 19672583
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Going offline: differences in the contributions of movement control processes when reaching in a typical versus novel environment.
    Wijeyaratnam DO; Chua R; Cressman EK
    Exp Brain Res; 2019 Jun; 237(6):1431-1444. PubMed ID: 30895342
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.