These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 24465747)

  • 1. Mechanism of deep-sea fish α-actin pressure tolerance investigated by molecular dynamics simulations.
    Wakai N; Takemura K; Morita T; Kitao A
    PLoS One; 2014; 9(1):e85852. PubMed ID: 24465747
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-pressure adaptation of muscle proteins from deep-sea fishes, Coryphaenoides yaquinae and C. armatus.
    Morita T
    Ann N Y Acad Sci; 2010 Feb; 1189():91-4. PubMed ID: 20233373
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure-based analysis of high pressure adaptation of alpha-actin.
    Morita T
    J Biol Chem; 2003 Jul; 278(30):28060-6. PubMed ID: 12740368
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative sequence analysis of myosin heavy chain proteins from congeneric shallow- and deep-living rattail fish (genus Coryphaenoides).
    Morita T
    J Exp Biol; 2008 May; 211(Pt 9):1362-7. PubMed ID: 18424669
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular adaptation to high pressure in cytochrome P450 1A and aryl hydrocarbon receptor systems of the deep-sea fish Coryphaenoides armatus.
    Lemaire B; Karchner SI; Goldstone JV; Lamb DC; Drazen JC; Rees JF; Hahn ME; Stegeman JJ
    Biochim Biophys Acta Proteins Proteom; 2018 Jan; 1866(1):155-165. PubMed ID: 28694077
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome sequencing of Coryphaenoides yaquinae reveals convergent and lineage-specific molecular evolution in deep-sea adaptation.
    Li W; Song J; Tu H; Jiang S; Pan B; Li J; Zhao Y; Chen L; Xu Q
    Mol Ecol Resour; 2024 Aug; 24(6):e13989. PubMed ID: 38946220
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pressure effects on actin self-assembly: interspecific differences in the equilibrium and kinetics of the G to F transformation.
    Swezey RR; Somero GN
    Biochemistry; 1985 Feb; 24(4):852-60. PubMed ID: 3994993
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Precision-cut liver slices to investigate responsiveness of deep-sea fish to contaminants at high pressure.
    Lemaire B; Debier C; Calderon PB; Thomé JP; Stegeman J; Mork J; Rees JF
    Environ Sci Technol; 2012 Sep; 46(18):10310-6. PubMed ID: 22900608
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Piezotolerance of the cytoskeletal structure in cultured deep-sea fish cells using DNA transfection and protein introduction techniques.
    Koyama S; Aizawa M
    Cytotechnology; 2008 Jan; 56(1):19-26. PubMed ID: 19002837
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Theoretical study of interactions between muscle aldolase and F-actin: insight into different species.
    Forlemu NY; Waingeh VF; Ouporov IV; Lowe SL; Thomasson KA
    Biopolymers; 2007 Jan; 85(1):60-71. PubMed ID: 17039493
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Depth as a driver of evolution in the deep sea: Insights from grenadiers (Gadiformes: Macrouridae) of the genus Coryphaenoides.
    Gaither MR; Violi B; Gray HWI; Neat F; Drazen JC; Grubbs RD; Roa-Varón A; Sutton T; Hoelzel AR
    Mol Phylogenet Evol; 2016 Nov; 104():73-82. PubMed ID: 27475496
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular phylogenetic relationships of the deep-sea fish genus Coryphaenoides (Gadiformes: Macrouridae) based on mitochondrial DNA.
    Morita T
    Mol Phylogenet Evol; 1999 Dec; 13(3):447-54. PubMed ID: 10620402
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of the piezo-tolerance of cultured deep-sea eel cells on survival rates, cell proliferation, and cytoskeletal structures.
    Koyama S; Kobayashi H; Inoue A; Miwa T; Aizawa M
    Extremophiles; 2005 Dec; 9(6):449-60. PubMed ID: 16082498
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein-protein interactions in actin-myosin binding and structural effects of R405Q mutation: a molecular dynamics study.
    Liu Y; Scolari M; Im W; Woo HJ
    Proteins; 2006 Jul; 64(1):156-66. PubMed ID: 16645962
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interaction of actin with the capping protein, CapZ from sea bass (Dicentrarchus labrax) white skeletal muscle.
    Kwiateck O; Papa I; Lebart MC; Benyamin Y; Roustan C
    Comp Biochem Physiol B Biochem Mol Biol; 2000 Dec; 127(4):551-62. PubMed ID: 11281272
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Composition and partial protein characterization of swimbladder foam from deep-sea fish Coryphaenoides acrolepis and Antimora rostrata.
    Josephson RV; Holtz RB; Misock JP; Phleger CF
    Comp Biochem Physiol B; 1975 Sep; 52(1):91-5. PubMed ID: 1183181
    [No Abstract]   [Full Text] [Related]  

  • 17. Competition between intradomain and interdomain interactions: a buried salt bridge is essential for villin headpiece folding and actin binding.
    Packer LE; Song B; Raleigh DP; McKnight CJ
    Biochemistry; 2011 May; 50(18):3706-12. PubMed ID: 21449557
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Notes on age determination, size and age structure, longevity and growth of co-occurring macrourid fishes.
    Bergstad OA; Hunter RH; Cousins NJ; Bailey DM; Jørgensen T
    J Fish Biol; 2021 Sep; 99(3):1032-1043. PubMed ID: 34021594
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temperature adaptation of fish hemoglobins reflected in rates of autoxidation.
    Wilson RR; Knowles FC
    Arch Biochem Biophys; 1987 May; 255(1):210-3. PubMed ID: 3592663
    [TBL] [Abstract][Full Text] [Related]  

  • 20. De novo transcriptome assembly and positive selection analysis of an individual deep-sea fish.
    Lan Y; Sun J; Xu T; Chen C; Tian R; Qiu JW; Qian PY
    BMC Genomics; 2018 May; 19(1):394. PubMed ID: 29793428
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.