BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 24465954)

  • 1. The intracellular bacteria Chlamydia hijack peroxisomes and utilize their enzymatic capacity to produce bacteria-specific phospholipids.
    Boncompain G; Müller C; Meas-Yedid V; Schmitt-Kopplin P; Lazarow PB; Subtil A
    PLoS One; 2014; 9(1):e86196. PubMed ID: 24465954
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Host and Bacterial Glycolysis during
    Ende RJ; Derré I
    Infect Immun; 2020 Nov; 88(12):. PubMed ID: 32900818
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chlamydia trachomatis regulates growth and development in response to host cell fatty acid availability in the absence of lipid droplets.
    Sharma M; Recuero-Checa MA; Fan FY; Dean D
    Cell Microbiol; 2018 Feb; 20(2):. PubMed ID: 29117636
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chlamydia trachomatis Scavenges Host Fatty Acids for Phospholipid Synthesis via an Acyl-Acyl Carrier Protein Synthetase.
    Yao J; Dodson VJ; Frank MW; Rock CO
    J Biol Chem; 2015 Sep; 290(36):22163-73. PubMed ID: 26195634
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chlamydia trachomatis Relies on Autonomous Phospholipid Synthesis for Membrane Biogenesis.
    Yao J; Cherian PT; Frank MW; Rock CO
    J Biol Chem; 2015 Jul; 290(31):18874-88. PubMed ID: 25995447
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stromal Fibroblasts Drive Host Inflammatory Responses That Are Dependent on Chlamydia trachomatis Strain Type and Likely Influence Disease Outcomes.
    Jolly AL; Rau S; Chadha AK; Abdulraheem EA; Dean D
    mBio; 2019 Mar; 10(2):. PubMed ID: 30890604
    [No Abstract]   [Full Text] [Related]  

  • 7. A meta-analysis of affinity purification-mass spectrometry experimental systems used to identify eukaryotic and chlamydial proteins at the Chlamydia trachomatis inclusion membrane.
    Olson MG; Ouellette SP; Rucks EA
    J Proteomics; 2020 Feb; 212():103595. PubMed ID: 31760040
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proximity Labeling To Map Host-Pathogen Interactions at the Membrane of a Bacterium-Containing Vacuole in Chlamydia trachomatis-Infected Human Cells.
    Olson MG; Widner RE; Jorgenson LM; Lawrence A; Lagundzin D; Woods NT; Ouellette SP; Rucks EA
    Infect Immun; 2019 Nov; 87(11):. PubMed ID: 31405957
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Host HDL biogenesis machinery is recruited to the inclusion of Chlamydia trachomatis-infected cells and regulates chlamydial growth.
    Cox JV; Naher N; Abdelrahman YM; Belland RJ
    Cell Microbiol; 2012 Oct; 14(10):1497-512. PubMed ID: 22672264
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Peroxisomes and ether lipid biosynthesis in rat testis and epididymis.
    Reisse S; Rothardt G; Völkl A; Beier K
    Biol Reprod; 2001 Jun; 64(6):1689-94. PubMed ID: 11369596
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Human Centrosomal Protein CCDC146 Binds
    Almeida F; Luís MP; Pereira IS; Pais SV; Mota LJ
    Front Cell Infect Microbiol; 2018; 8():254. PubMed ID: 30094225
    [No Abstract]   [Full Text] [Related]  

  • 12. The
    Hamaoui D; Cossé MM; Mohan J; Lystad AH; Wollert T; Subtil A
    Proc Natl Acad Sci U S A; 2020 Oct; 117(43):26784-26794. PubMed ID: 33055216
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of Active Metabolism on Chlamydia trachomatis Elementary Body Transcript Profile and Infectivity.
    Grieshaber S; Grieshaber N; Yang H; Baxter B; Hackstadt T; Omsland A
    J Bacteriol; 2018 Jul; 200(14):. PubMed ID: 29735758
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of the Mitochondrion-Fatty Acid Axis for the Metabolic Reprogramming of Chlamydia trachomatis during Treatment with β-Lactam Antimicrobials.
    Shima K; Kaufhold I; Eder T; Käding N; Schmidt N; Ogunsulire IM; Deenen R; Köhrer K; Friedrich D; Isay SE; Grebien F; Klinger M; Richer BC; Günther UL; Deepe GS; Rattei T; Rupp J
    mBio; 2021 Mar; 12(2):. PubMed ID: 33785629
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plasmalogen homeostasis - regulation of plasmalogen biosynthesis and its physiological consequence in mammals.
    Honsho M; Fujiki Y
    FEBS Lett; 2017 Sep; 591(18):2720-2729. PubMed ID: 28686302
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stimulation of the cytosolic receptor for peptidoglycan, Nod1, by infection with Chlamydia trachomatis or Chlamydia muridarum.
    Welter-Stahl L; Ojcius DM; Viala J; Girardin S; Liu W; Delarbre C; Philpott D; Kelly KA; Darville T
    Cell Microbiol; 2006 Jun; 8(6):1047-57. PubMed ID: 16681844
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Activation of epidermal growth factor receptor is required for Chlamydia trachomatis development.
    Patel AL; Chen X; Wood ST; Stuart ES; Arcaro KF; Molina DP; Petrovic S; Furdui CM; Tsang AW
    BMC Microbiol; 2014 Dec; 14():277. PubMed ID: 25471819
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chlamydia trachomatis intercepts Golgi-derived sphingolipids through a Rab14-mediated transport required for bacterial development and replication.
    Capmany A; Damiani MT
    PLoS One; 2010 Nov; 5(11):e14084. PubMed ID: 21124879
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Actin and intermediate filaments stabilize the Chlamydia trachomatis vacuole by forming dynamic structural scaffolds.
    Kumar Y; Valdivia RH
    Cell Host Microbe; 2008 Aug; 4(2):159-69. PubMed ID: 18692775
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Loss of Expression of a Single Type 3 Effector (CT622) Strongly Reduces
    Cossé MM; Barta ML; Fisher DJ; Oesterlin LK; Niragire B; Perrinet S; Millot GA; Hefty PS; Subtil A
    Front Cell Infect Microbiol; 2018; 8():145. PubMed ID: 29868501
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.