BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 24466112)

  • 21. Efficient and specific repair of sickle beta-globin RNA by trans-splicing ribozymes.
    Byun J; Lan N; Long M; Sullenger BA
    RNA; 2003 Oct; 9(10):1254-63. PubMed ID: 13130139
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Trans-splicing ribozymes for targeted gene delivery.
    Köhler U; Ayre BG; Goodman HM; Haseloff J
    J Mol Biol; 1999 Feb; 285(5):1935-50. PubMed ID: 9925776
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Optimization and application of the group I ribozyme trans-splicing reaction.
    Einvik C; Fiskaa T; Lundblad EW; Johansen S
    Methods Mol Biol; 2004; 252():359-71. PubMed ID: 15017063
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Trans-activation of the Tetrahymena ribozyme by its P2-2.1 domains.
    Ikawa Y; Shiraishi H; Inoue T
    J Biochem; 1998 Mar; 123(3):528-33. PubMed ID: 9538238
    [TBL] [Abstract][Full Text] [Related]  

  • 25. RNA as a drug target: recent patents on the catalytic activity of trans-splicing ribozymes derived from group I intron RNA.
    Johnson IM
    Recent Pat DNA Gene Seq; 2010 Jan; 4(1):17-28. PubMed ID: 20218956
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Single-cell detection of trans-splicing ribozyme in vivo activity.
    Hasegawa S; Choi JW; Rao J
    J Am Chem Soc; 2004 Jun; 126(23):7158-9. PubMed ID: 15186136
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A chemical phylogeny of group I introns based upon interference mapping of a bacterial ribozyme.
    Strauss-Soukup JK; Strobel SA
    J Mol Biol; 2000 Sep; 302(2):339-58. PubMed ID: 10970738
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evolution of intron splicing towards optimized gene expression is based on various Cis- and Trans-molecular mechanisms.
    Frumkin I; Yofe I; Bar-Ziv R; Gurvich Y; Lu YY; Voichek Y; Towers R; Schirman D; Krebber H; Pilpel Y
    PLoS Biol; 2019 Aug; 17(8):e3000423. PubMed ID: 31442222
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Role of a conserved J8/7 X P4 base-triple in the Tetrahymena ribozyme.
    Ohki Y; Ikawa Y; Shiraishi H; Inoue T
    J Biochem; 2002 Nov; 132(5):713-8. PubMed ID: 12417020
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sequence specificity of in vivo reverse splicing of the Tetrahymena group I intron.
    Roman J; Rubin MN; Woodson SA
    RNA; 1999 Jan; 5(1):1-13. PubMed ID: 9917062
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enhancing the second step of the trans excision-splicing reaction of a group I ribozyme by exploiting P9.0 and P10 for intermolecular recognition.
    Bell MA; Sinha J; Johnson AK; Testa SM
    Biochemistry; 2004 Apr; 43(14):4323-31. PubMed ID: 15065876
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Activation of the catalytic core of a group I intron by a remote 3' splice junction.
    Michel F; Jaeger L; Westhof E; Kuras R; Tihy F; Xu MQ; Shub DA
    Genes Dev; 1992 Aug; 6(8):1373-85. PubMed ID: 1644285
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Self-splicing of the Tetrahymena intron from mRNA in mammalian cells.
    Hagen M; Cech TR
    EMBO J; 1999 Nov; 18(22):6491-500. PubMed ID: 10562561
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evaluating group I intron catalytic efficiency in mammalian cells.
    Long MB; Sullenger BA
    Mol Cell Biol; 1999 Oct; 19(10):6479-87. PubMed ID: 10490588
    [TBL] [Abstract][Full Text] [Related]  

  • 35. New loop-loop tertiary interactions in self-splicing introns of subgroup IC and ID: a complete 3D model of the Tetrahymena thermophila ribozyme.
    Lehnert V; Jaeger L; Michel F; Westhof E
    Chem Biol; 1996 Dec; 3(12):993-1009. PubMed ID: 9000010
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Gene expression responses in vivo by human telomerase reverse transcriptase (hTERT)-targeting trans-splicing ribozyme.
    Song MS; Jeong JS; Cho KS; Lee SW
    Exp Mol Med; 2007 Dec; 39(6):722-32. PubMed ID: 18160843
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Identification of the nucleotides in the A-rich bulge of the Tetrahymena ribozyme responsible for an efficient self-splicing reaction.
    Ikawa Y; Okada A; Imahori H; Shiraishi H; Inoue T
    J Biochem; 1997 Oct; 122(4):878-82. PubMed ID: 9399595
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Reverse splicing of the Tetrahymena IVS: evidence for multiple reaction sites in the 23S rRNA.
    Roman J; Woodson SA
    RNA; 1995 Jul; 1(5):478-90. PubMed ID: 7489509
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Design of highly specific cytotoxins by using trans-splicing ribozymes.
    Ayre BG; Köhler U; Goodman HM; Haseloff J
    Proc Natl Acad Sci U S A; 1999 Mar; 96(7):3507-12. PubMed ID: 10097066
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evaluating target silencing by short hairpin RNA mediated by the group I intron in cultured mammalian cells.
    Noguchi K; Ishitu Y; Takaku H
    BMC Biotechnol; 2011 Jul; 11():79. PubMed ID: 21781346
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.