These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 24466112)

  • 41. In vivo selection of better self-splicing introns in Escherichia coli: the role of the P1 extension helix of the Tetrahymena intron.
    Guo F; Cech TR
    RNA; 2002 May; 8(5):647-58. PubMed ID: 12022231
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Probing the interplay between the two steps of group I intron splicing: competition of exogenous guanosine with omega G.
    Zarrinkar PP; Sullenger BA
    Biochemistry; 1998 Dec; 37(51):18056-63. PubMed ID: 9922174
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Targeting of highly conserved Dengue virus sequences with anti-Dengue virus trans-splicing group I introns.
    Carter JR; Keith JH; Barde PV; Fraser TS; Fraser MJ
    BMC Mol Biol; 2010 Nov; 11():84. PubMed ID: 21078188
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A group II intron-encoded maturase functions preferentially in cis and requires both the reverse transcriptase and X domains to promote RNA splicing.
    Cui X; Matsuura M; Wang Q; Ma H; Lambowitz AM
    J Mol Biol; 2004 Jul; 340(2):211-31. PubMed ID: 15201048
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Trans-activation of the Tetrahymena group I intron ribozyme via a non-native RNA-RNA interaction.
    Ikawa Y; Shiraishi H; Inoue T
    Nucleic Acids Res; 1999 Apr; 27(7):1650-5. PubMed ID: 10075996
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Imaging Tetrahymena ribozyme splicing activity in single live mammalian cells.
    Hasegawa S; Jackson WC; Tsien RY; Rao J
    Proc Natl Acad Sci U S A; 2003 Dec; 100(25):14892-6. PubMed ID: 14645710
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Trans-splicing of a mutated glycosylasparaginase mRNA sequence by a group I ribozyme deficient in hydrolysis.
    Lundblad EW; Haugen P; Johansen SD
    Eur J Biochem; 2004 Dec; 271(23-24):4932-8. PubMed ID: 15606781
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Analysis of the P7 region within the catalytic core of the Tetrahymena ribozyme by employing in vitro selection.
    Oe Y; Ikawa Y; Shiraishi H; Inoue T
    Nucleic Acids Symp Ser; 2000; (44):197-8. PubMed ID: 12903336
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Tetrahymena thermophila and Candida albicans group I intron-derived ribozymes can catalyze the trans-excision-splicing reaction.
    Dotson PP; Johnson AK; Testa SM
    Nucleic Acids Res; 2008 Sep; 36(16):5281-9. PubMed ID: 18684993
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Novel RNA structural features of an alternatively splicing group II intron from Clostridium tetani.
    McNeil BA; Zimmerly S
    RNA; 2014 Jun; 20(6):855-66. PubMed ID: 24751650
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Transitions between the steps of forward and reverse splicing of group IIC introns.
    Smathers CM; Robart AR
    RNA; 2020 May; 26(5):664-673. PubMed ID: 32127385
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Mechanistic investigations of a ribozyme derived from the Tetrahymena group I intron: insights into catalysis and the second step of self-splicing.
    Mei R; Herschlag D
    Biochemistry; 1996 May; 35(18):5796-809. PubMed ID: 8639540
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Tagging ribozyme reaction sites to follow trans-splicing in mammalian cells.
    Jones JT; Lee SW; Sullenger BA
    Nat Med; 1996 Jun; 2(6):643-8. PubMed ID: 8640554
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Tumor-specific gene delivery using RNA-targeting Tetrahymena group I intron.
    Jung HS; Kwon BS; Lee SW
    Biotechnol Lett; 2005 Apr; 27(8):567-74. PubMed ID: 15973491
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A modified group I intron can function as both a ribozyme and a 5' exon in a trans-exon ligation reaction.
    Tasiouka KI; Burke JM
    Gene; 1994 Jun; 144(1):1-7. PubMed ID: 8026742
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Engineering a family of synthetic splicing ribozymes.
    Che AJ; Knight TF
    Nucleic Acids Res; 2010 May; 38(8):2748-55. PubMed ID: 20299341
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Spliceozymes: ribozymes that remove introns from pre-mRNAs in trans.
    Amini ZN; Olson KE; Müller UF
    PLoS One; 2014; 9(7):e101932. PubMed ID: 25014025
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A Pneumocystis carinii group I intron-derived ribozyme utilizes an endogenous guanosine as the first reaction step nucleophile in the trans excision-splicing reaction.
    Dotson PP; Sinha J; Testa SM
    Biochemistry; 2008 Apr; 47(16):4780-7. PubMed ID: 18363339
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Antitumor effects of systemically delivered adenovirus harboring trans-splicing ribozyme in intrahepatic colon cancer mouse model.
    Jeong JS; Lee SW; Hong SH; Lee YJ; Jung HI; Cho KS; Seo HH; Lee SJ; Park S; Song MS; Kim CM; Kim IH
    Clin Cancer Res; 2008 Jan; 14(1):281-90. PubMed ID: 18172280
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Optimizing the substrate specificity of a group I intron ribozyme.
    Zarrinkar PP; Sullenger BA
    Biochemistry; 1999 Mar; 38(11):3426-32. PubMed ID: 10079089
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.