These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
324 related articles for article (PubMed ID: 24466411)
1. Vitamin D: calcium and bone homeostasis during evolution. Bouillon R; Suda T Bonekey Rep; 2014 Jan; 3():480. PubMed ID: 24466411 [TBL] [Abstract][Full Text] [Related]
2. [Current Topics on Vitamin D. Evolution of animals and vitamin D]. Suda T Clin Calcium; 2015 Mar; 25(3):349-58. PubMed ID: 25716807 [TBL] [Abstract][Full Text] [Related]
3. Vitamin D and Bone. Christakos S; Li S; DeLa Cruz J; Verlinden L; Carmeliet G Handb Exp Pharmacol; 2020; 262():47-63. PubMed ID: 31792684 [TBL] [Abstract][Full Text] [Related]
4. The vitamin D hormone and its nuclear receptor: molecular actions and disease states. Haussler MR; Haussler CA; Jurutka PW; Thompson PD; Hsieh JC; Remus LS; Selznick SH; Whitfield GK J Endocrinol; 1997 Sep; 154 Suppl():S57-73. PubMed ID: 9379138 [TBL] [Abstract][Full Text] [Related]
5. Integrated View on the Role of Vitamin D Actions on Bone and Growth Plate Homeostasis. Verlinden L; Carmeliet G JBMR Plus; 2021 Dec; 5(12):e10577. PubMed ID: 34950832 [TBL] [Abstract][Full Text] [Related]
6. 1alpha(OH)D3 One-alpha-hydroxy-cholecalciferol--an active vitamin D analog. Clinical studies on prophylaxis and treatment of secondary hyperparathyroidism in uremic patients on chronic dialysis. Brandi L Dan Med Bull; 2008 Nov; 55(4):186-210. PubMed ID: 19232159 [TBL] [Abstract][Full Text] [Related]
7. Temporal changes in tissue 1α,25-dihydroxyvitamin D3, vitamin D receptor target genes, and calcium and PTH levels after 1,25(OH)2D3 treatment in mice. Chow EC; Quach HP; Vieth R; Pang KS Am J Physiol Endocrinol Metab; 2013 May; 304(9):E977-89. PubMed ID: 23482451 [TBL] [Abstract][Full Text] [Related]
8. In vivo function of VDR in gene expression-VDR knock-out mice. Kato S; Takeyama K; Kitanaka S; Murayama A; Sekine K; Yoshizawa T J Steroid Biochem Mol Biol; 1999; 69(1-6):247-51. PubMed ID: 10418998 [TBL] [Abstract][Full Text] [Related]
9. Vitamin D signaling in osteocytes: effects on bone and mineral homeostasis. Lieben L; Carmeliet G Bone; 2013 Jun; 54(2):237-43. PubMed ID: 23072922 [TBL] [Abstract][Full Text] [Related]
10. Interaction between calcium and 1,25-dihydroxyvitamin D3 in the regulation of preproparathyroid hormone and vitamin D receptor messenger ribonucleic acid in avian parathyroids. Russell J; Bar A; Sherwood LM; Hurwitz S Endocrinology; 1993 Jun; 132(6):2639-44. PubMed ID: 8389284 [TBL] [Abstract][Full Text] [Related]
11. 1,25-Dihydroxyvitamin D3 Controls a Cohort of Vitamin D Receptor Target Genes in the Proximal Intestine That Is Enriched for Calcium-regulating Components. Lee SM; Riley EM; Meyer MB; Benkusky NA; Plum LA; DeLuca HF; Pike JW J Biol Chem; 2015 Jul; 290(29):18199-18215. PubMed ID: 26041780 [TBL] [Abstract][Full Text] [Related]
12. Genetic models show that parathyroid hormone and 1,25-dihydroxyvitamin D3 play distinct and synergistic roles in postnatal mineral ion homeostasis and skeletal development. Xue Y; Karaplis AC; Hendy GN; Goltzman D; Miao D Hum Mol Genet; 2005 Jun; 14(11):1515-28. PubMed ID: 15843402 [TBL] [Abstract][Full Text] [Related]
13. 1alpha-hydroxyvitamin D2 partially dissociates between preservation of cancellous bone mass and effects on calcium homeostasis in ovariectomized rats. Erben RG; Bante U; Birner H; Stangassinger M Calcif Tissue Int; 1997 May; 60(5):449-56. PubMed ID: 9115163 [TBL] [Abstract][Full Text] [Related]
14. Evidence that both 1alpha,25-dihydroxyvitamin D3 and 24-hydroxylated D3 enhance human osteoblast differentiation and mineralization. van Driel M; Koedam M; Buurman CJ; Roelse M; Weyts F; Chiba H; Uitterlinden AG; Pols HA; van Leeuwen JP J Cell Biochem; 2006 Oct; 99(3):922-35. PubMed ID: 16741965 [TBL] [Abstract][Full Text] [Related]
15. Inactivation of the 25-hydroxyvitamin D 1alpha-hydroxylase and vitamin D receptor demonstrates independent and interdependent effects of calcium and vitamin D on skeletal and mineral homeostasis. Panda DK; Miao D; Bolivar I; Li J; Huo R; Hendy GN; Goltzman D J Biol Chem; 2004 Apr; 279(16):16754-66. PubMed ID: 14739296 [TBL] [Abstract][Full Text] [Related]
16. Minireview: vitamin D receptor: new assignments for an already busy receptor. Norman AW Endocrinology; 2006 Dec; 147(12):5542-8. PubMed ID: 16946007 [TBL] [Abstract][Full Text] [Related]
17. Vitamin D physiology. Lips P Prog Biophys Mol Biol; 2006 Sep; 92(1):4-8. PubMed ID: 16563471 [TBL] [Abstract][Full Text] [Related]
18. Vitamin D Receptor Mediates a Myriad of Biological Actions Dependent on Its 1,25-Dihydroxyvitamin D Ligand: Distinct Regulatory Themes Revealed by Induction of Klotho and Fibroblast Growth Factor-23. Haussler MR; Livingston S; Sabir ZL; Haussler CA; Jurutka PW JBMR Plus; 2021 Jan; 5(1):e10432. PubMed ID: 33553988 [TBL] [Abstract][Full Text] [Related]
19. Selective biological response by target organs (intestine, kidney, and bone) to 1,25-dihydroxyvitamin D3 and two analogues. Norman AW; Sergeev IN; Bishop JE; Okamura WH Cancer Res; 1993 Sep; 53(17):3935-42. PubMed ID: 8395333 [TBL] [Abstract][Full Text] [Related]
20. Vitamin D and type II sodium-dependent phosphate cotransporters. Kido S; Kaneko I; Tatsumi S; Segawa H; Miyamoto K Contrib Nephrol; 2013; 180():86-97. PubMed ID: 23652552 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]