These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
196 related articles for article (PubMed ID: 24466581)
1. Synthetic carbohydrate antigens for HIV vaccine design. Wang LX Curr Opin Chem Biol; 2013 Dec; 17(6):997-1005. PubMed ID: 24466581 [TBL] [Abstract][Full Text] [Related]
2. Roles of glycans in interactions between gp120 and HIV broadly neutralizing antibodies. Qi Y; Jo S; Im W Glycobiology; 2016 Mar; 26(3):251-60. PubMed ID: 26537503 [TBL] [Abstract][Full Text] [Related]
4. Anti-V3/Glycan and Anti-MPER Neutralizing Antibodies, but Not Anti-V2/Glycan Site Antibodies, Are Strongly Associated with Greater Anti-HIV-1 Neutralization Breadth and Potency. Jacob RA; Moyo T; Schomaker M; Abrahams F; Grau Pujol B; Dorfman JR J Virol; 2015 May; 89(10):5264-75. PubMed ID: 25673728 [TBL] [Abstract][Full Text] [Related]
5. Structural basis for diverse N-glycan recognition by HIV-1-neutralizing V1-V2-directed antibody PG16. Pancera M; Shahzad-Ul-Hussan S; Doria-Rose NA; McLellan JS; Bailer RT; Dai K; Loesgen S; Louder MK; Staupe RP; Yang Y; Zhang B; Parks R; Eudailey J; Lloyd KE; Blinn J; Alam SM; Haynes BF; Amin MN; Wang LX; Burton DR; Koff WC; Nabel GJ; Mascola JR; Bewley CA; Kwong PD Nat Struct Mol Biol; 2013 Jul; 20(7):804-13. PubMed ID: 23708607 [TBL] [Abstract][Full Text] [Related]
6. Unprecedented Role of Hybrid N-Glycans as Ligands for HIV-1 Broadly Neutralizing Antibodies. Shivatare VS; Shivatare SS; Lee CD; Liang CH; Liao KS; Cheng YY; Saidachary G; Wu CY; Lin NH; Kwong PD; Burton DR; Wu CY; Wong CH J Am Chem Soc; 2018 Apr; 140(15):5202-5210. PubMed ID: 29578688 [TBL] [Abstract][Full Text] [Related]
7. Recent strategies targeting HIV glycans in vaccine design. Horiya S; MacPherson IS; Krauss IJ Nat Chem Biol; 2014 Dec; 10(12):990-9. PubMed ID: 25393493 [TBL] [Abstract][Full Text] [Related]
8. Efficient convergent synthesis of bi-, tri-, and tetra-antennary complex type N-glycans and their HIV-1 antigenicity. Shivatare SS; Chang SH; Tsai TI; Ren CT; Chuang HY; Hsu L; Lin CW; Li ST; Wu CY; Wong CH J Am Chem Soc; 2013 Oct; 135(41):15382-91. PubMed ID: 24032650 [TBL] [Abstract][Full Text] [Related]
9. Broad neutralization coverage of HIV by multiple highly potent antibodies. Walker LM; Huber M; Doores KJ; Falkowska E; Pejchal R; Julien JP; Wang SK; Ramos A; Chan-Hui PY; Moyle M; Mitcham JL; Hammond PW; Olsen OA; Phung P; Fling S; Wong CH; Phogat S; Wrin T; Simek MD; ; Koff WC; Wilson IA; Burton DR; Poignard P Nature; 2011 Sep; 477(7365):466-70. PubMed ID: 21849977 [TBL] [Abstract][Full Text] [Related]
10. Complex-type N-glycan recognition by potent broadly neutralizing HIV antibodies. Mouquet H; Scharf L; Euler Z; Liu Y; Eden C; Scheid JF; Halper-Stromberg A; Gnanapragasam PN; Spencer DI; Seaman MS; Schuitemaker H; Feizi T; Nussenzweig MC; Bjorkman PJ Proc Natl Acad Sci U S A; 2012 Nov; 109(47):E3268-77. PubMed ID: 23115339 [TBL] [Abstract][Full Text] [Related]
11. Bacterially expressed HIV-1 gp120 outer-domain fragment immunogens with improved stability and affinity for CD4-binding site neutralizing antibodies. Rathore U; Purwar M; Vignesh VS; Das R; Kumar AA; Bhattacharyya S; Arendt H; DeStefano J; Wilson A; Parks C; La Branche CC; Montefiori DC; Varadarajan R J Biol Chem; 2018 Sep; 293(39):15002-15020. PubMed ID: 30093409 [TBL] [Abstract][Full Text] [Related]
12. Broadly Neutralizing Antibody-Guided Carbohydrate-Based HIV Vaccine Design: Challenges and Opportunities. Liu CC; Zheng XJ; Ye XS ChemMedChem; 2016 Feb; 11(4):357-62. PubMed ID: 26762799 [TBL] [Abstract][Full Text] [Related]
13. Antibody 2G12 recognizes di-mannose equivalently in domain- and nondomain-exchanged forms but only binds the HIV-1 glycan shield if domain exchanged. Doores KJ; Fulton Z; Huber M; Wilson IA; Burton DR J Virol; 2010 Oct; 84(20):10690-9. PubMed ID: 20702629 [TBL] [Abstract][Full Text] [Related]
14. Tiny steps towards an HIV vaccine. Willyard C Nature; 2010 Jul; 466(7304):S8. PubMed ID: 20631706 [No Abstract] [Full Text] [Related]
15. Glycosylation of HIV-1 gp120 V3 loop: towards the rational design of a synthetic carbohydrate vaccine. Sirois S; Touaibia M; Chou KC; Roy R Curr Med Chem; 2007; 14(30):3232-42. PubMed ID: 18220757 [TBL] [Abstract][Full Text] [Related]
16. Changes in Structure and Antigenicity of HIV-1 Env Trimers Resulting from Removal of a Conserved CD4 Binding Site-Proximal Glycan. Liang Y; Guttman M; Williams JA; Verkerke H; Alvarado D; Hu SL; Lee KK J Virol; 2016 Oct; 90(20):9224-36. PubMed ID: 27489265 [TBL] [Abstract][Full Text] [Related]
17. Antibody responses to the HIV-1 envelope high mannose patch. Daniels CN; Saunders KO Adv Immunol; 2019; 143():11-73. PubMed ID: 31607367 [TBL] [Abstract][Full Text] [Related]
18. Elicitation of Neutralizing Antibodies Targeting the V2 Apex of the HIV Envelope Trimer in a Wild-Type Animal Model. Voss JE; Andrabi R; McCoy LE; de Val N; Fuller RP; Messmer T; Su CY; Sok D; Khan SN; Garces F; Pritchard LK; Wyatt RT; Ward AB; Crispin M; Wilson IA; Burton DR Cell Rep; 2017 Oct; 21(1):222-235. PubMed ID: 28978475 [TBL] [Abstract][Full Text] [Related]
19. Co-evolution of HIV Envelope and Apex-Targeting Neutralizing Antibody Lineage Provides Benchmarks for Vaccine Design. Rantalainen K; Berndsen ZT; Murrell S; Cao L; Omorodion O; Torres JL; Wu M; Umotoy J; Copps J; Poignard P; Landais E; Paulson JC; Wilson IA; Ward AB Cell Rep; 2018 Jun; 23(11):3249-3261. PubMed ID: 29898396 [TBL] [Abstract][Full Text] [Related]
20. Antibodies elicited by yeast glycoproteins recognize HIV-1 virions and potently neutralize virions with high mannose N-glycans. Zhang H; Fu H; Luallen RJ; Liu B; Lee FH; Doms RW; Geng Y Vaccine; 2015 Sep; 33(39):5140-7. PubMed ID: 26277072 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]