BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 24467384)

  • 1. Sex differences in endothelial function in porcine coronary arteries: a role for H2O2 and gap junctions?
    Wong PS; Roberts RE; Randall MD
    Br J Pharmacol; 2014 Jun; 171(11):2751-66. PubMed ID: 24467384
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A role for the sodium pump in H2O2-induced vasorelaxation in porcine isolated coronary arteries.
    Wong PS; Garle MJ; Alexander SP; Randall MD; Roberts RE
    Pharmacol Res; 2014 Dec; 90():25-35. PubMed ID: 25258292
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sex differences in the role of transient receptor potential (TRP) channels in endothelium-dependent vasorelaxation in porcine isolated coronary arteries.
    Wong PS; Roberts RE; Randall MD
    Eur J Pharmacol; 2015 Mar; 750():108-17. PubMed ID: 25620134
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sex differences in the role of NADPH oxidases in endothelium-dependent vasorelaxation in porcine isolated coronary arteries.
    Wong PS; Randall MD; Roberts RE
    Vascul Pharmacol; 2015 Sep; 72():83-92. PubMed ID: 25872163
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contribution of K(+) channels to endothelium-derived hypolarization-induced renal vasodilation in rats in vivo and in vitro.
    Rasmussen KMB; Braunstein TH; Salomonsson M; Brasen JC; Sorensen CM
    Pflugers Arch; 2016 Jul; 468(7):1139-1149. PubMed ID: 26965146
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of gap junctions in mediating endothelium-dependent responses to bradykinin in myometrial small arteries isolated from pregnant women.
    Kenny LC; Baker PN; Kendall DA; Randall MD; Dunn WR
    Br J Pharmacol; 2002 Aug; 136(8):1085-8. PubMed ID: 12163339
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of myoendothelial cell contact in non-nitric oxide-, non-prostanoid-mediated endothelium-dependent relaxation of porcine coronary artery.
    Kühberger E; Groschner K; Kukovetz WR; Brunner F
    Br J Pharmacol; 1994 Dec; 113(4):1289-94. PubMed ID: 7889285
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of calcium-activated potassium channels with small conductance in bradykinin-induced vasodilation of porcine retinal arterioles.
    Dalsgaard T; Kroigaard C; Bek T; Simonsen U
    Invest Ophthalmol Vis Sci; 2009 Aug; 50(8):3819-25. PubMed ID: 19255162
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anandamide-induced relaxation of sheep coronary arteries: the role of the vascular endothelium, arachidonic acid metabolites and potassium channels.
    Grainger J; Boachie-Ansah G
    Br J Pharmacol; 2001 Nov; 134(5):1003-12. PubMed ID: 11682448
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hyperoxic gassing with Tiron enhances bradykinin-induced endothelium-dependent and EDH-type relaxation through generation of hydrogen peroxide.
    Wong PS; Roberts RE; Randall MD
    Pharmacol Res; 2015 Jan; 91():29-35. PubMed ID: 25450247
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Shear stress-induced vasodilation in porcine coronary conduit arteries is independent of nitric oxide release.
    Dube S; Canty JM
    Am J Physiol Heart Circ Physiol; 2001 Jun; 280(6):H2581-90. PubMed ID: 11356613
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Smooth muscle mediates circumferential conduction of hyperpolarization and relaxation to focal endothelial cell activation in large coronary arteries.
    Selemidis S; Cocks T
    Naunyn Schmiedebergs Arch Pharmacol; 2007 Apr; 375(2):85-94. PubMed ID: 17340126
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibitory effects of brefeldin A, a membrane transport blocker, on the bradykinin-induced hyperpolarization-mediated relaxation in the porcine coronary artery.
    Ohnishi Y; Hirano K; Nishimura J; Furue M; Kanaide H
    Br J Pharmacol; 2001 Sep; 134(1):168-78. PubMed ID: 11522609
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Light-induced vs. bradykinin-induced relaxation of coronary arteries: do S-nitrosothiols act as endothelium-derived hyperpolarizing factors?
    Batenburg WW; Kappers MH; Eikmann MJ; Ramzan SN; de Vries R; Danser AH
    J Hypertens; 2009 Aug; 27(8):1631-40. PubMed ID: 19421072
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cooling-induced dilatation of cutaneous arteries is mediated by increased myoendothelial communication.
    Flavahan S; Flavahan NA
    Am J Physiol Heart Circ Physiol; 2020 Jul; 319(1):H123-H132. PubMed ID: 32469638
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of glycyrrhetinic acid isoforms and carbenoxolone as inhibitors of EDHF-type relaxations mediated via gap junctions.
    Chaytor AT; Marsh WL; Hutcheson IR; Griffith TM
    Endothelium; 2000; 7(4):265-78. PubMed ID: 11201524
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human coronary arteriolar dilation to bradykinin depends on membrane hyperpolarization: contribution of nitric oxide and Ca2+-activated K+ channels.
    Miura H; Liu Y; Gutterman DD
    Circulation; 1999 Jun; 99(24):3132-8. PubMed ID: 10377076
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Secretoneurin facilitates endothelium-dependent relaxations in porcine coronary arteries.
    Chan CK; Vanhoutte PM
    Am J Physiol Heart Circ Physiol; 2011 Apr; 300(4):H1159-65. PubMed ID: 21297022
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Developmental changes in myoendothelial gap junction mediated vasodilator activity in the rat saphenous artery.
    Sandow SL; Goto K; Rummery NM; Hill CE
    J Physiol; 2004 May; 556(Pt 3):875-86. PubMed ID: 14766938
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mediators of bradykinin-induced vasorelaxation in human coronary microarteries.
    Batenburg WW; Garrelds IM; van Kats JP; Saxena PR; Danser AH
    Hypertension; 2004 Feb; 43(2):488-92. PubMed ID: 14691197
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.