BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

997 related articles for article (PubMed ID: 24467397)

  • 1. The mononuclear molybdenum enzymes.
    Hille R; Hall J; Basu P
    Chem Rev; 2014 Apr; 114(7):3963-4038. PubMed ID: 24467397
    [No Abstract]   [Full Text] [Related]  

  • 2. Molybdenum and tungsten in biology.
    Hille R
    Trends Biochem Sci; 2002 Jul; 27(7):360-7. PubMed ID: 12114025
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional mononuclear molybdenum enzymes: challenges and triumphs in molecular cloning, expression, and isolation.
    Mintmier B; Nassif S; Stolz JF; Basu P
    J Biol Inorg Chem; 2020 Jun; 25(4):547-569. PubMed ID: 32279136
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The molybdenum oxotransferases and related enzymes.
    Hille R
    Dalton Trans; 2013 Mar; 42(9):3029-42. PubMed ID: 23318732
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemical systems modeling the d
    Young CG
    J Inorg Biochem; 2016 Sep; 162():238-252. PubMed ID: 27432259
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mo and W bis-MGD enzymes: nitrate reductases and formate dehydrogenases.
    Moura JJ; Brondino CD; Trincão J; Romão MJ
    J Biol Inorg Chem; 2004 Oct; 9(7):791-9. PubMed ID: 15311335
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molybdenum- and tungsten-containing formate dehydrogenases and formylmethanofuran dehydrogenases: Structure, mechanism, and cofactor insertion.
    Niks D; Hille R
    Protein Sci; 2019 Jan; 28(1):111-122. PubMed ID: 30120799
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Shifting the metallocentric molybdoenzyme paradigm: the importance of pyranopterin coordination.
    Rothery RA; Weiner JH
    J Biol Inorg Chem; 2015 Mar; 20(2):349-72. PubMed ID: 25267303
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molybdenum-cofactor-containing enzymes: structure and mechanism.
    Kisker C; Schindelin H; Rees DC
    Annu Rev Biochem; 1997; 66():233-67. PubMed ID: 9242907
    [TBL] [Abstract][Full Text] [Related]  

  • 10. X-ray crystal structure and EPR spectra of "arsenite-inhibited" Desulfovibriogigas aldehyde dehydrogenase: a member of the xanthine oxidase family.
    Boer DR; Thapper A; Brondino CD; Romão MJ; Moura JJ
    J Am Chem Soc; 2004 Jul; 126(28):8614-5. PubMed ID: 15250689
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sulfur K-edge X-ray absorption spectroscopy and density functional theory calculations on monooxo Mo(IV) and bisoxo Mo(VI) bis-dithiolenes: insights into the mechanism of oxo transfer in sulfite oxidase and its relation to the mechanism of DMSO reductase.
    Ha Y; Tenderholt AL; Holm RH; Hedman B; Hodgson KO; Solomon EI
    J Am Chem Soc; 2014 Jun; 136(25):9094-105. PubMed ID: 24884723
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bacterial iron-sulfur proteins.
    Yoch DC; Carithers RP
    Microbiol Rev; 1979 Sep; 43(3):384-421. PubMed ID: 232243
    [No Abstract]   [Full Text] [Related]  

  • 13. Spectroscopic and Kinetic Properties of the Molybdenum-containing, NAD+-dependent Formate Dehydrogenase from Ralstonia eutropha.
    Niks D; Duvvuru J; Escalona M; Hille R
    J Biol Chem; 2016 Jan; 291(3):1162-74. PubMed ID: 26553877
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nitrite-dependent nitric oxide synthesis by molybdenum enzymes.
    Bender D; Schwarz G
    FEBS Lett; 2018 Jun; 592(12):2126-2139. PubMed ID: 29749013
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The reactions and the structures of molybdenum centers in enzymes.
    Bray RC
    Adv Enzymol Relat Areas Mol Biol; 1980; 51():107-65. PubMed ID: 6255771
    [No Abstract]   [Full Text] [Related]  

  • 16. Molybdenum enzymes in reactions involving aldehydes and acids.
    Romão MJ; Cunha CA; Brondino CD; Moura JJ
    Met Ions Biol Syst; 2002; 39():539-70. PubMed ID: 11913136
    [No Abstract]   [Full Text] [Related]  

  • 17. Mutagenesis study on amino acids around the molybdenum centre of the periplasmic nitrate reductase from Ralstonia eutropha.
    Hettmann T; Siddiqui RA; Frey C; Santos-Silva T; Romão MJ; Diekmann S
    Biochem Biophys Res Commun; 2004 Aug; 320(4):1211-9. PubMed ID: 15249219
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Properties of rabbit liver aldehyde oxidase and the relationship of the enzyme to xanthine oxidase and dehydrogenase.
    Turner NA; Doyle WA; Ventom AM; Bray RC
    Eur J Biochem; 1995 Sep; 232(2):646-57. PubMed ID: 7556219
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activation of nit-1 nitrate reductase by W-formate dehydrogenase.
    Deaton JC; Solomon EI; Durfor CN; Wetherbee PJ; Burgess BK; Jacobs DB
    Biochem Biophys Res Commun; 1984 Jun; 121(3):1042-7. PubMed ID: 6234890
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electronic structure contributions to reactivity in xanthine oxidase family enzymes.
    Stein BW; Kirk ML
    J Biol Inorg Chem; 2015 Mar; 20(2):183-94. PubMed ID: 25425163
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 50.