BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

997 related articles for article (PubMed ID: 24467397)

  • 21. Analysis of the electron paramagnetic resonance properties of the [2Fe-2S]1+ centers in molybdenum enzymes of the xanthine oxidase family: assignment of signals I and II.
    Caldeira J; Belle V; Asso M; Guigliarelli B; Moura I; Moura JJ; Bertrand P
    Biochemistry; 2000 Mar; 39(10):2700-7. PubMed ID: 10704221
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comparative EPR and redox studies of three prokaryotic enzymes of the xanthine oxidase family: quinoline 2-oxidoreductase, quinaldine 4-oxidase, and isoquinoline 1-oxidoreductase.
    Canne C; Stephan I; Finsterbusch J; Lingens F; Kappl R; Fetzner S; Hüttermann J
    Biochemistry; 1997 Aug; 36(32):9780-90. PubMed ID: 9245410
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Recent studies on xanthine oxidase and related enzymes.
    Bray RC; Bennett B; Burke JF; Chovnick A; Doyle WA; Howes BD; Lowe DJ; Richards RL; Turner NA; Ventom A; Whittle JR
    Biochem Soc Trans; 1996 Feb; 24(1):99-105. PubMed ID: 8674784
    [No Abstract]   [Full Text] [Related]  

  • 24. Molybdoenzymes and molybdenum cofactor in plants.
    Mendel RR; Hänsch R
    J Exp Bot; 2002 Aug; 53(375):1689-98. PubMed ID: 12147719
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The molybdenum-containing xanthine oxidoreductases and picolinate dehydrogenases.
    Pai EF; Nishino T
    Met Ions Biol Syst; 2002; 39():431-54. PubMed ID: 11913133
    [No Abstract]   [Full Text] [Related]  

  • 26. The molybdoproteome of Starkeya novella--insights into the diversity and functions of molybdenum containing proteins in response to changing growth conditions.
    Kappler U; Nouwens AS
    Metallomics; 2013 Apr; 5(4):325-34. PubMed ID: 23310928
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparison of the active-site design of molybdenum oxo-transfer enzymes by quantum mechanical calculations.
    Li J; Ryde U
    Inorg Chem; 2014 Nov; 53(22):11913-24. PubMed ID: 25372012
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A structure-based catalytic mechanism for the xanthine oxidase family of molybdenum enzymes.
    Huber R; Hof P; Duarte RO; Moura JJ; Moura I; Liu MY; LeGall J; Hille R; Archer M; Romão MJ
    Proc Natl Acad Sci U S A; 1996 Aug; 93(17):8846-51. PubMed ID: 8799115
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Study of the spin-spin interactions between the metal centers of Desulfovibrio gigas aldehyde oxidoreductase: identification of the reducible sites of the [2Fe-2S]1+,2+ clusters.
    More C; Asso M; Roger G; Guigliarelli B; Caldeira J; Moura J; Bertrand P
    Biochemistry; 2005 Aug; 44(34):11628-35. PubMed ID: 16114900
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Synthesis and reactivity studies of model complexes for molybdopterin-dependent enzymes.
    Thapper A; Lorber C; Fryxelius J; Behrens A; Nordlander E
    J Inorg Biochem; 2000 Apr; 79(1-4):67-74. PubMed ID: 10830849
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Kinetics and interactions of molybdenum and iron-sulfur centers in bacterial enzymes of the xanthine oxidase family: mechanistic implications.
    Canne C; Lowe DJ; Fetzner S; Adams B; Smith AT; Kappl R; Bray RC; Hüttermann J
    Biochemistry; 1999 Oct; 38(42):14077-87. PubMed ID: 10529255
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Molecular basis of proton motive force generation: structure of formate dehydrogenase-N.
    Jormakka M; Törnroth S; Byrne B; Iwata S
    Science; 2002 Mar; 295(5561):1863-8. PubMed ID: 11884747
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A common pathway for the activation of several molybdoenzymes in Escherichia coli K12.
    Giordano G; Violet M; Medani CL; Pommier J
    Biochim Biophys Acta; 1984 Apr; 798(2):216-25. PubMed ID: 6370312
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Quantitative transfer of the molybdenum cofactor from xanthine oxidase and from sulphite oxidase to the deficient enzyme of the nit-1 mutant of Neurospora crassa to yield active nitrate reductase.
    Hawkes TR; Bray RC
    Biochem J; 1984 Apr; 219(2):481-93. PubMed ID: 6234882
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nitrite reduction by molybdoenzymes: a new class of nitric oxide-forming nitrite reductases.
    Maia LB; Moura JJ
    J Biol Inorg Chem; 2015 Mar; 20(2):403-33. PubMed ID: 25589250
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Spectroscopic studies of the molybdenum-containing dimethyl sulfoxide reductase from Rhodobacter sphaeroides f. sp. denitrificans.
    Bastian NR; Kay CJ; Barber MJ; Rajagopalan KV
    J Biol Chem; 1991 Jan; 266(1):45-51. PubMed ID: 1845974
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Crystal structure and mechanism of action of the xanthine oxidase-related aldehyde oxidoreductase from Desulfovibrio gigas.
    Romão MJ; Huber R
    Biochem Soc Trans; 1997 Aug; 25(3):755-7. PubMed ID: 9388539
    [No Abstract]   [Full Text] [Related]  

  • 38. Sulfite Oxidase Catalyzes Single-Electron Transfer at Molybdenum Domain to Reduce Nitrite to Nitric Oxide.
    Wang J; Krizowski S; Fischer-Schrader K; Niks D; Tejero J; Sparacino-Watkins C; Wang L; Ragireddy V; Frizzell S; Kelley EE; Zhang Y; Basu P; Hille R; Schwarz G; Gladwin MT
    Antioxid Redox Signal; 2015 Aug; 23(4):283-94. PubMed ID: 25314640
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Crystal structure and mechanism of CO dehydrogenase, a molybdo iron-sulfur flavoprotein containing S-selanylcysteine.
    Dobbek H; Gremer L; Meyer O; Huber R
    Proc Natl Acad Sci U S A; 1999 Aug; 96(16):8884-9. PubMed ID: 10430865
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Theoretical studies on mechanisms of some Mo enzymes.
    Cerqueira NM; Pakhira B; Sarkar S
    J Biol Inorg Chem; 2015 Mar; 20(2):323-35. PubMed ID: 25698503
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 50.