BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

997 related articles for article (PubMed ID: 24467397)

  • 41. Great metalloclusters in enzymology.
    Rees DC
    Annu Rev Biochem; 2002; 71():221-46. PubMed ID: 12045096
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Formylmethanofuran dehydrogenases from methanogenic Archaea. Substrate specificity, EPR properties and reversible inactivation by cyanide of the molybdenum or tungsten iron-sulfur proteins.
    Bertram PA; Karrasch M; Schmitz RA; Böcher R; Albracht SP; Thauer RK
    Eur J Biochem; 1994 Mar; 220(2):477-84. PubMed ID: 8125106
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Investigation of metal-dithiolate fold angle effects: implications for molybdenum and tungsten enzymes.
    Joshi HK; Cooney JJ; Inscore FE; Gruhn NE; Lichtenberger DL; Enemark JH
    Proc Natl Acad Sci U S A; 2003 Apr; 100(7):3719-24. PubMed ID: 12655066
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Molybdenum in nitrate reductase and nitrite oxidoreductase.
    Kroneck PM; Abt DJ
    Met Ions Biol Syst; 2002; 39():369-403. PubMed ID: 11913131
    [No Abstract]   [Full Text] [Related]  

  • 45. Structure and function of molybdopterin containing enzymes.
    Romão MJ; Knäblein J; Huber R; Moura JJ
    Prog Biophys Mol Biol; 1997; 68(2-3):121-44. PubMed ID: 9652170
    [TBL] [Abstract][Full Text] [Related]  

  • 46. EPR and redox characterization of iron-sulfur centers in nitrate reductases A and Z from Escherichia coli. Evidence for a high-potential and a low-potential class and their relevance in the electron-transfer mechanism.
    Guigliarelli B; Asso M; More C; Augier V; Blasco F; Pommier J; Giordano G; Bertrand P
    Eur J Biochem; 1992 Jul; 207(1):61-8. PubMed ID: 1321049
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Crystal structure of the xanthine oxidase-related aldehyde oxido-reductase from D. gigas.
    Romão MJ; Archer M; Moura I; Moura JJ; LeGall J; Engh R; Schneider M; Hof P; Huber R
    Science; 1995 Nov; 270(5239):1170-6. PubMed ID: 7502041
    [TBL] [Abstract][Full Text] [Related]  

  • 48. An alternative model for haem ligation in nitrate reductase and analogous respiratory cytochrome b complexes.
    van der Oost J; Nederkoorn PH; Stouthamer AH; Westerhoff HV; van Spanning RJ
    Mol Microbiol; 1996 Oct; 22(1):193-6. PubMed ID: 8899720
    [No Abstract]   [Full Text] [Related]  

  • 49. Iron-sulphur systems in some isolated multi-component oxidative enzymes.
    Bray RC; Barber MJ; Dalton H; Lowe DJ; Coughlan MP
    Biochem Soc Trans; 1975; 3(4):479-82. PubMed ID: 1237425
    [No Abstract]   [Full Text] [Related]  

  • 50. Oxomolybdenum tetrathiolates with sterically encumbering ligands: modeling the effect of a protein matrix on electronic structure and reduction potentials.
    McNaughton RL; Mondal S; Nemykin VN; Basu P; Kirk ML
    Inorg Chem; 2005 Nov; 44(23):8216-22. PubMed ID: 16270958
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Structural and electron paramagnetic resonance (EPR) studies of mononuclear molybdenum enzymes from sulfate-reducing bacteria.
    Brondino CD; Rivas MG; Romão MJ; Moura JJ; Moura I
    Acc Chem Res; 2006 Oct; 39(10):788-96. PubMed ID: 17042479
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Biochemical and spectroscopic characterization of the human mitochondrial amidoxime reducing components hmARC-1 and hmARC-2 suggests the existence of a new molybdenum enzyme family in eukaryotes.
    Wahl B; Reichmann D; Niks D; Krompholz N; Havemeyer A; Clement B; Messerschmidt T; Rothkegel M; Biester H; Hille R; Mendel RR; Bittner F
    J Biol Chem; 2010 Nov; 285(48):37847-59. PubMed ID: 20861021
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Cell biology of molybdenum in plants and humans.
    Mendel RR; Kruse T
    Biochim Biophys Acta; 2012 Sep; 1823(9):1568-79. PubMed ID: 22370186
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Cell biology of molybdenum.
    Mendel RR
    Biofactors; 2009; 35(5):429-34. PubMed ID: 19623604
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The inorganic biochemistry of molybdoenzymes.
    Bray RC
    Q Rev Biophys; 1988 Aug; 21(3):299-329. PubMed ID: 3065813
    [No Abstract]   [Full Text] [Related]  

  • 56. Molybdenum in enzymatic and heterogeneous catalysis.
    Mitchell PC
    J Inorg Biochem; 1986; 28(2-3):107-23. PubMed ID: 3806088
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Heavy metal ions inhibit molybdoenzyme activity by binding to the dithiolene moiety of molybdopterin in Escherichia coli.
    Neumann M; Leimkühler S
    FEBS J; 2008 Nov; 275(22):5678-89. PubMed ID: 18959753
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Characterization of the molybdenum cofactor of sulfite oxidase, xanthine, oxidase, and nitrate reductase. Identification of a pteridine as a structural component.
    Johnson JL; Hainline BE; Rajagopalan KV
    J Biol Chem; 1980 Mar; 255(5):1783-6. PubMed ID: 6892571
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The molybdenum cofactor biosynthesis protein MobA from Rhodobacter capsulatus is required for the activity of molybdenum enzymes containing MGD, but not for xanthine dehydrogenase harboring the MPT cofactor.
    Leimkühler S; Klipp W
    FEMS Microbiol Lett; 1999 May; 174(2):239-46. PubMed ID: 10339814
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Molybdenum and tungsten enzymes in C1 metabolism.
    Vorholt JA; Thauer RK
    Met Ions Biol Syst; 2002; 39():571-619. PubMed ID: 11913137
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 50.