BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

367 related articles for article (PubMed ID: 24467530)

  • 21. Involvement of extrinsic and intrinsic apoptotic pathways together with endoplasmic reticulum stress in cell death induced by naphthylchalcones in a leukemic cell line: advantages of multi-target action.
    Winter E; Chiaradia LD; Silva AH; Nunes RJ; Yunes RA; Creczynski-Pasa TB
    Toxicol In Vitro; 2014 Aug; 28(5):769-77. PubMed ID: 24583196
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Isoliquiritigenin induces caspase-dependent apoptosis via downregulation of HPV16 E6 expression in cervical cancer Ca Ski cells.
    Hirchaud F; Hermetet F; Ablise M; Fauconnet S; Vuitton DA; Prétet JL; Mougin C
    Planta Med; 2013 Nov; 79(17):1628-35. PubMed ID: 24214831
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Targeting inflammatory pathways by flavonoids for prevention and treatment of cancer.
    Prasad S; Phromnoi K; Yadav VR; Chaturvedi MM; Aggarwal BB
    Planta Med; 2010 Aug; 76(11):1044-63. PubMed ID: 20635307
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Current Discovery Progress of Some Emerging Anti-infective Chalcones: Highlights from 2016 to 2017.
    Mahapatra DK; Ghorai S; Bharti SK; Patil AG; Gayen S
    Curr Drug Discov Technol; 2020; 17(1):30-44. PubMed ID: 30033873
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A Review on Mechanisms of Anti Tumor Activity of Chalcones.
    Sharma R; Kumar R; Kodwani R; Kapoor S; Khare A; Bansal R; Khurana S; Singh S; Thomas J; Roy B; Phartyal R; Saluja S; Kumar S
    Anticancer Agents Med Chem; 2015; 16(2):200-11. PubMed ID: 25980813
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Induction of cancer cell death by isoflavone: the role of multiple signaling pathways.
    Li Y; Kong D; Bao B; Ahmad A; Sarkar FH
    Nutrients; 2011 Oct; 3(10):877-96. PubMed ID: 22200028
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Butein Shows Cytotoxic Effects and Induces Apoptosis in Human Ovarian Cancer Cells.
    Yang PY; Hu DN; Lin IC; Liu FS
    Am J Chin Med; 2015; 43(4):769-82. PubMed ID: 26119952
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Synthesis and evaluation of novel α-substituted chalcones with potent anti-cancer activities and ability to overcome multidrug resistance.
    Riaz S; Iqbal M; Ullah R; Zahra R; Chotana GA; Faisal A; Saleem RSZ
    Bioorg Chem; 2019 Jun; 87():123-135. PubMed ID: 30884306
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Chalcones as Promising Lead Compounds on Cancer Therapy.
    León-González AJ; Acero N; Muñoz-Mingarro D; Navarro I; Martín-Cordero C
    Curr Med Chem; 2015; 22(30):3407-25. PubMed ID: 26219392
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Antitumor promoting potential of selected phytochemicals derived from spices: a review.
    Rajput S; Mandal M
    Eur J Cancer Prev; 2012 Mar; 21(2):205-15. PubMed ID: 21876437
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Potential of butein, a tetrahydroxychalcone to obliterate cancer.
    Padmavathi G; Rathnakaram SR; Monisha J; Bordoloi D; Roy NK; Kunnumakkara AB
    Phytomedicine; 2015 Dec; 22(13):1163-71. PubMed ID: 26598915
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Targeting triple negative breast cancer heterogeneity with chalcones: a molecular insight.
    Elkhalifa D; Alali F; Al Moustafa AE; Khalil A
    J Drug Target; 2019 Sep; 27(8):830-838. PubMed ID: 30582377
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Medicinal Potential of Heterocyclic Compounds from Diverse Natural Sources for the Management of Cancer.
    Singh M; Sharma P; Singh PK; Singh TG; Saini B
    Mini Rev Med Chem; 2020; 20(11):942-957. PubMed ID: 32048967
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Anti-inflammatory plant natural products for cancer therapy.
    Aravindaram K; Yang NS
    Planta Med; 2010 Aug; 76(11):1103-17. PubMed ID: 20432202
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Chalcones in cancer: understanding their role in terms of QSAR.
    Katsori AM; Hadjipavlou-Litina D
    Curr Med Chem; 2009; 16(9):1062-81. PubMed ID: 19275612
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Chalcones and their therapeutic targets for the management of diabetes: structural and pharmacological perspectives.
    Mahapatra DK; Asati V; Bharti SK
    Eur J Med Chem; 2015 Mar; 92():839-65. PubMed ID: 25638569
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Two new chalcones from leaves of Morus alba L.
    Yang Y; Zhang T; Xiao L; Yang L; Chen R
    Fitoterapia; 2010 Sep; 81(6):614-6. PubMed ID: 20211228
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Isobavachalcone isolated from
    Li Y; Qin X; Li P; Zhang H; Lin T; Miao Z; Ma S
    Drug Des Devel Ther; 2019; 13():1449-1460. PubMed ID: 31118579
    [No Abstract]   [Full Text] [Related]  

  • 39. Structure-activity relationship study of antitrypanosomal chalcone derivatives using multivariate analysis.
    Gomes KS; da Costa-Silva TA; Oliveira IH; Aguilar AM; Oliveira-Silva D; Uemi M; Silva WA; Melo LR; Andrade CKZ; Tempone AG; Baldim JL; Lago JHG
    Bioorg Med Chem Lett; 2019 Jun; 29(12):1459-1462. PubMed ID: 31000155
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cancer cell signaling pathways targeted by spice-derived nutraceuticals.
    Sung B; Prasad S; Yadav VR; Aggarwal BB
    Nutr Cancer; 2012; 64(2):173-97. PubMed ID: 22149093
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.