BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

876 related articles for article (PubMed ID: 24467652)

  • 1. Recent advances in molecular recognition based on nanoengineered platforms.
    Mu B; Zhang J; McNicholas TP; Reuel NF; Kruss S; Strano MS
    Acc Chem Res; 2014 Apr; 47(4):979-88. PubMed ID: 24467652
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transduction of glycan-lectin binding using near-infrared fluorescent single-walled carbon nanotubes for glycan profiling.
    Reuel NF; Ahn JH; Kim JH; Zhang J; Boghossian AA; Mahal LK; Strano MS
    J Am Chem Soc; 2011 Nov; 133(44):17923-33. PubMed ID: 21970594
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A rapid, direct, quantitative, and label-free detector of cardiac biomarker troponin T using near-infrared fluorescent single-walled carbon nanotube sensors.
    Zhang J; Kruss S; Hilmer AJ; Shimizu S; Schmois Z; De La Cruz F; Barone PW; Reuel NF; Heller DA; Strano MS
    Adv Healthc Mater; 2014 Mar; 3(3):412-23. PubMed ID: 23966175
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection and discrimination of alpha-fetoprotein with a label-free electrochemical impedance spectroscopy biosensor array based on lectin functionalized carbon nanotubes.
    Yang H; Li Z; Wei X; Huang R; Qi H; Gao Q; Li C; Zhang C
    Talanta; 2013 Jul; 111():62-8. PubMed ID: 23622526
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Silicon nanomaterials platform for bioimaging, biosensing, and cancer therapy.
    Peng F; Su Y; Zhong Y; Fan C; Lee ST; He Y
    Acc Chem Res; 2014 Feb; 47(2):612-23. PubMed ID: 24397270
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanoengineered glycan sensors enabling native glycoprofiling for medicinal applications: towards profiling glycoproteins without labeling or liberation steps.
    Reuel NF; Mu B; Zhang J; Hinckley A; Strano MS
    Chem Soc Rev; 2012 Sep; 41(17):5744-79. PubMed ID: 22868627
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single-walled carbon nanotubes as optical materials for biosensing.
    Chen Z; Zhang X; Yang R; Zhu Z; Chen Y; Tan W
    Nanoscale; 2011 May; 3(5):1949-56. PubMed ID: 21409262
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A carbon nanotubes based ATP apta-sensing platform and its application in cellular assay.
    Zhang L; Wei H; Li J; Li T; Li D; Li Y; Wang E
    Biosens Bioelectron; 2010 Apr; 25(8):1897-901. PubMed ID: 20106653
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carbon nanotubes-based label-free affinity sensors for environmental monitoring.
    Sarkar T; Gao Y; Mulchandani A
    Appl Biochem Biotechnol; 2013 Jul; 170(5):1011-25. PubMed ID: 23653139
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NanoMonitor: a miniature electronic biosensor for glycan biomarker detection.
    Nagaraj VJ; Aithal S; Eaton S; Bothara M; Wiktor P; Prasad S
    Nanomedicine (Lond); 2010 Apr; 5(3):369-78. PubMed ID: 20394531
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Noncovalent functionalization of single-walled carbon nanotubes.
    Zhao YL; Stoddart JF
    Acc Chem Res; 2009 Aug; 42(8):1161-71. PubMed ID: 19462997
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carbon nanotubes for the label-free detection of biomarkers.
    Münzer AM; Michael ZP; Star A
    ACS Nano; 2013 Sep; 7(9):7448-53. PubMed ID: 24032561
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanoelectronic Heterodyne Sensor: A New Electronic Sensing Paradigm.
    Kulkarni GS; Zang W; Zhong Z
    Acc Chem Res; 2016 Nov; 49(11):2578-2586. PubMed ID: 27668314
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrostatic Assemblies of Single-Walled Carbon Nanotubes and Sequence-Tunable Peptoid Polymers Detect a Lectin Protein and Its Target Sugars.
    Chio L; Del Bonis-O'Donnell JT; Kline MA; Kim JH; McFarlane IR; Zuckermann RN; Landry MP
    Nano Lett; 2019 Nov; 19(11):7563-7572. PubMed ID: 30958010
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glycosylated Conductive Polymer: A Multimodal Biointerface for Studying Carbohydrate-Protein Interactions.
    Zeng X; Qu K; Rehman A
    Acc Chem Res; 2016 Sep; 49(9):1624-33. PubMed ID: 27524389
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomimetic chemosensor: designing peptide recognition elements for surface functionalization of carbon nanotube field effect transistors.
    Kuang Z; Kim SN; Crookes-Goodson WJ; Farmer BL; Naik RR
    ACS Nano; 2010 Jan; 4(1):452-8. PubMed ID: 20038158
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An analytical system for single nanomaterials: combination of capillary electrophoresis with Raman spectroscopy or with scanning probe microscopy for individual single-walled carbon nanotube analysis.
    Yamamoto T; Murakami Y; Motoyanagi J; Fukushima T; Maruyama S; Kato M
    Anal Chem; 2009 Sep; 81(17):7336-41. PubMed ID: 19658407
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single-walled carbon nanotube field-effect transistors with graphene oxide passivation for fast, sensitive, and selective protein detection.
    Chang J; Mao S; Zhang Y; Cui S; Steeber DA; Chen J
    Biosens Bioelectron; 2013 Apr; 42():186-92. PubMed ID: 23202350
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On-line capillary electrophoresis/laser-induced fluorescence/mass spectrometry analysis of glycans labeled with Teal™ fluorescent dye using an electrokinetic sheath liquid pump-based nanospray ion source.
    Khan S; Liu J; Szabo Z; Kunnummal B; Han X; Ouyang Y; Linhardt RJ; Xia Q
    Rapid Commun Mass Spectrom; 2018 Jun; 32(11):882-888. PubMed ID: 29575162
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Label-free, single protein detection on a near-infrared fluorescent single-walled carbon nanotube/protein microarray fabricated by cell-free synthesis.
    Ahn JH; Kim JH; Reuel NF; Barone PW; Boghossian AA; Zhang J; Yoon H; Chang AC; Hilmer AJ; Strano MS
    Nano Lett; 2011 Jul; 11(7):2743-52. PubMed ID: 21627102
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 44.