These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 24467906)

  • 1. Senescence, dormancy and tillering in perennial C4 grasses.
    Sarath G; Baird LM; Mitchell RB
    Plant Sci; 2014 Mar; 217-218():140-51. PubMed ID: 24467906
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Summer dormancy, drought survival and functional resource acquisition strategies in California perennial grasses.
    Balachowski JA; Bristiel PM; Volaire FA
    Ann Bot; 2016 Aug; 118(2):357-68. PubMed ID: 27325898
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Summer dormancy in perennial temperate grasses.
    Volaire F; Norton M
    Ann Bot; 2006 Nov; 98(5):927-33. PubMed ID: 17028299
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Seasonal below-ground metabolism in switchgrass.
    Palmer NA; Saathoff AJ; Scully ED; Tobias CM; Twigg P; Madhavan S; Schmer M; Cahoon R; Sattler SE; Edmé SJ; Mitchell RB; Sarath G
    Plant J; 2017 Dec; 92(6):1059-1075. PubMed ID: 29030891
    [TBL] [Abstract][Full Text] [Related]  

  • 5. C4 bioenergy crops for cool climates, with special emphasis on perennial C4 grasses.
    Sage RF; de Melo Peixoto M; Friesen P; Deen B
    J Exp Bot; 2015 Jul; 66(14):4195-212. PubMed ID: 25873658
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Winter dormancy in trees.
    Nilsson O
    Curr Biol; 2022 Jun; 32(12):R630-R634. PubMed ID: 35728543
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Water deficit and induction of summer dormancy in perennial Mediterranean grasses.
    Volaire F; Seddaiu G; Ledda L; Lelievre F
    Ann Bot; 2009 Jun; 103(8):1337-46. PubMed ID: 19369219
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bud production and dynamics of flowering and vegetative tillers in Andropogon gerardii (Poaceae): the role of developmental constraints.
    Ott JP; Hartnett DC
    Am J Bot; 2011 Aug; 98(8):1293-8. PubMed ID: 21788531
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Are winter and summer dormancy symmetrical seasonal adaptive strategies? The case of temperate herbaceous perennials.
    Gillespie LM; Volaire FA
    Ann Bot; 2017 Feb; 119(3):311-323. PubMed ID: 28087658
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contrasting metabolism in perenniating structures of upland and lowland switchgrass plants late in the growing season.
    Palmer NA; Saathoff AJ; Tobias CM; Twigg P; Xia Y; Vogel KP; Madhavan S; Sattler SE; Sarath G
    PLoS One; 2014; 9(8):e105138. PubMed ID: 25133804
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Winter cold-tolerance thresholds in field-grown Miscanthus hybrid rhizomes.
    Peixoto Mde M; Friesen PC; Sage RF
    J Exp Bot; 2015 Jul; 66(14):4415-25. PubMed ID: 25788733
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heterologous overexpression of the birch FRUITFULL-like MADS-box gene BpMADS4 prevents normal senescence and winter dormancy in Populus tremula L.
    Hoenicka H; Nowitzki O; Hanelt D; Fladung M
    Planta; 2008 Apr; 227(5):1001-11. PubMed ID: 18185941
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phenology of perennial, native grass, belowground axillary buds in the northern mixed-grass prairie.
    Russell ML; Vermeire LT; Ganguli AC; Hendrickson JR
    Am J Bot; 2017 Jun; 104(6):915-923. PubMed ID: 28626038
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A review on biomass production from C4 grasses: yield and quality for end-use.
    Tubeileh A; Rennie TJ; Goss MJ
    Curr Opin Plant Biol; 2016 Jun; 31():172-80. PubMed ID: 27258573
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Senescence and nitrogen use efficiency in perennial grasses for forage and biofuel production.
    Yang J; Udvardi M
    J Exp Bot; 2018 Feb; 69(4):855-865. PubMed ID: 29444307
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Review: Nitrogen acquisition, assimilation, and seasonal cycling in perennial grasses.
    Li D; Wang J; Chen R; Chen J; Zong J; Li L; Hao D; Guo H
    Plant Sci; 2024 May; 342():112054. PubMed ID: 38423392
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nitrogen remobilization and conservation, and underlying senescence-associated gene expression in the perennial switchgrass Panicum virgatum.
    Yang J; Worley E; Ma Q; Li J; Torres-Jerez I; Li G; Zhao PX; Xu Y; Tang Y; Udvardi M
    New Phytol; 2016 Jul; 211(1):75-89. PubMed ID: 26935010
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Linkage mapping evidence for a syntenic QTL associated with flowering time in perennial C
    Jensen E; Shafiei R; Ma XF; Serba DD; Smith DP; Slavov GT; Robson P; Farrar K; Thomas Jones S; Swaller T; Flavell R; Clifton-Brown J; Saha MC; Donnison I
    Glob Change Biol Bioenergy; 2021 Jan; 13(1):98-111. PubMed ID: 33381230
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sub-zero cold tolerance of Spartina pectinata (prairie cordgrass) and Miscanthus × giganteus: candidate bioenergy crops for cool temperate climates.
    Friesen PC; Peixoto Mde M; Lee DK; Sage RF
    J Exp Bot; 2015 Jul; 66(14):4403-13. PubMed ID: 25873680
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Global grass (Poaceae) success underpinned by traits facilitating colonization, persistence and habitat transformation.
    Linder HP; Lehmann CER; Archibald S; Osborne CP; Richardson DM
    Biol Rev Camb Philos Soc; 2018 May; 93(2):1125-1144. PubMed ID: 29230921
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.