These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 24467970)

  • 1. The Clinical Biomechanics Award 2012 - presented by the European Society of Biomechanics: large scale simulations of trabecular bone adaptation to loading and treatment.
    Levchuk A; Zwahlen A; Weigt C; Lambers FM; Badilatti SD; Schulte FA; Kuhn G; Müller R
    Clin Biomech (Bristol, Avon); 2014 Apr; 29(4):355-62. PubMed ID: 24467970
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vivo validation of a computational bone adaptation model using open-loop control and time-lapsed micro-computed tomography.
    Schulte FA; Lambers FM; Webster DJ; Kuhn G; Müller R
    Bone; 2011 Dec; 49(6):1166-72. PubMed ID: 21890010
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Large-scale microstructural simulation of load-adaptive bone remodeling in whole human vertebrae.
    Badilatti SD; Christen P; Levchuk A; Marangalou JH; van Rietbergen B; Parkinson I; Müller R
    Biomech Model Mechanobiol; 2016 Feb; 15(1):83-95. PubMed ID: 26255055
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Load-adaptive bone remodeling simulations reveal osteoporotic microstructural and mechanical changes in whole human vertebrae.
    Badilatti SD; Christen P; Parkinson I; Müller R
    J Biomech; 2016 Dec; 49(16):3770-3779. PubMed ID: 27793404
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Long-term prediction of three-dimensional bone architecture in simulations of pre-, peri- and post-menopausal microstructural bone remodeling.
    Müller R
    Osteoporos Int; 2005 Mar; 16 Suppl 2():S25-35. PubMed ID: 15340800
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental and finite element analysis of the mouse caudal vertebrae loading model: prediction of cortical and trabecular bone adaptation.
    Webster D; Wirth A; van Lenthe GH; Müller R
    Biomech Model Mechanobiol; 2012 Jan; 11(1-2):221-30. PubMed ID: 21472383
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Trabecular bone adapts to long-term cyclic loading by increasing stiffness and normalization of dynamic morphometric rates.
    Lambers FM; Koch K; Kuhn G; Ruffoni D; Weigt C; Schulte FA; Müller R
    Bone; 2013 Aug; 55(2):325-34. PubMed ID: 23624292
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Validation of a bone loading estimation algorithm for patient-specific bone remodelling simulations.
    Christen P; Ito K; Santos AA; Müller R; Bert van Rietbergen
    J Biomech; 2013 Mar; 46(5):941-8. PubMed ID: 23332230
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of microstructural and mechanical alterations of trabecular bone in a simulated three-dimensional remodeling process.
    Wang H; Ji B; Liu XS; Guo XE; Huang Y; Hwang KC
    J Biomech; 2012 Sep; 45(14):2417-25. PubMed ID: 22867764
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional adaptation of cancellous bone in human proximal femur predicted by trabecular surface remodeling simulation toward uniform stress state.
    Tsubota K; Adachi T; Tomita Y
    J Biomech; 2002 Dec; 35(12):1541-51. PubMed ID: 12445607
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Trabecular bone remodeling phenomenon as a pattern for structural optimization.
    Nowak M
    Stud Health Technol Inform; 2008; 133():196-200. PubMed ID: 18376027
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes in the fabric and compliance tensors of cancellous bone due to trabecular surface remodeling, predicted by a digital image-based model.
    Tsubota K; Adachi T
    Comput Methods Biomech Biomed Engin; 2004 Aug; 7(4):187-92. PubMed ID: 15512762
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Strain-adaptive in silico modeling of bone adaptation--a computer simulation validated by in vivo micro-computed tomography data.
    Schulte FA; Zwahlen A; Lambers FM; Kuhn G; Ruffoni D; Betts D; Webster DJ; Müller R
    Bone; 2013 Jan; 52(1):485-92. PubMed ID: 22985889
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Bone adaptation to mechanical loading].
    Torstveit MK
    Tidsskr Nor Laegeforen; 2002 Sep; 122(21):2109-11. PubMed ID: 12555647
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tissue-level remodeling simulations of cancellous bone capture effects of in vivo loading in a rabbit model.
    Morgan TG; Bostrom MP; van der Meulen MC
    J Biomech; 2015 Mar; 48(5):875-82. PubMed ID: 25579991
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A microstructural finite element simulation of mechanically induced bone formation.
    Koontz JT; Charras GT; Guldberg RE
    J Biomech Eng; 2001 Dec; 123(6):607-12. PubMed ID: 11783732
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-dimensional micro-level computational study of Wolff's law via trabecular bone remodeling in the human proximal femur using design space topology optimization.
    Boyle C; Kim IY
    J Biomech; 2011 Mar; 44(5):935-42. PubMed ID: 21159341
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Trabecular bone response to mechanical and parathyroid hormone stimulation: the role of mechanical microenvironment.
    Kim CH; Takai E; Zhou H; von Stechow D; Müller R; Dempster DW; Guo XE
    J Bone Miner Res; 2003 Dec; 18(12):2116-25. PubMed ID: 14672346
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bone morphology allows estimation of loading history in a murine model of bone adaptation.
    Christen P; van Rietbergen B; Lambers FM; Müller R; Ito K
    Biomech Model Mechanobiol; 2012 Mar; 11(3-4):483-92. PubMed ID: 21735242
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Trabecular architecture can remain intact for both disuse and overload enhanced resorption characteristics.
    Tanck E; Ruimerman R; Huiskes R
    J Biomech; 2006; 39(14):2631-7. PubMed ID: 16214155
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.