These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 2446799)
1. Pharmacologic relevance of dihydropyridine binding sites in membranes from rat aorta: kinetic and equilibrium studies. Wibo M; DeRoth L; Godfraind T Circ Res; 1988 Jan; 62(1):91-6. PubMed ID: 2446799 [TBL] [Abstract][Full Text] [Related]
2. Relationship of dihydropyridine binding sites with calcium-dependent neurotransmitter release in synaptosomes. Massieu L; Tapia R J Neurochem; 1988 Oct; 51(4):1184-9. PubMed ID: 2458434 [TBL] [Abstract][Full Text] [Related]
3. Kinetics of binding of dihydropyridine calcium channel ligands to skeletal muscle membranes: evidence for low-affinity sites and for the involvement of G proteins. Dunn SM; Bladen C Biochemistry; 1991 Jun; 30(23):5716-21. PubMed ID: 1645998 [TBL] [Abstract][Full Text] [Related]
4. Multiple calcium channels in synaptosomes: voltage dependence of 1,4-dihydropyridine binding and effects on function. Dunn SM Biochemistry; 1988 Jul; 27(14):5275-81. PubMed ID: 2458759 [TBL] [Abstract][Full Text] [Related]
5. Binding of the dihydropyridine calcium channel blocker (+)-[3H] isopropyl-4-(2,1,3-benzoxadiazol-4-yl)-1,4-dihydro-5-methoxycarbonyl-2, 6-dimethyl-3-pyridinecarboxylate (PN200-110) to RINm5F membranes and cells: characterization and functional significance. Yaney GC; Stafford GA; Henstenberg JD; Sharp GW; Weiland GA J Pharmacol Exp Ther; 1991 Aug; 258(2):652-62. PubMed ID: 1713965 [TBL] [Abstract][Full Text] [Related]
6. Characterization in rat aorta of the binding sites responsible for blockade of noradrenaline-evoked calcium entry by nisoldipine. Morel N; Godfraind T Br J Pharmacol; 1991 Feb; 102(2):467-77. PubMed ID: 1826619 [TBL] [Abstract][Full Text] [Related]
7. Influence of Mg++ on the effect of diltiazem to increase dihydropyridine binding to receptors on Ca++-channels in chick cardiac and skeletal muscle membranes. Maan AC; Ptasienski J; Hosey MM J Pharmacol Exp Ther; 1986 Dec; 239(3):768-74. PubMed ID: 2432217 [TBL] [Abstract][Full Text] [Related]
8. Pharmacologic and radioligand binding analysis of the actions of 1,4-dihydropyridine activator-antagonist pairs in smooth muscle. Wei XY; Luchowski EM; Rutledge A; Su CM; Triggle DJ J Pharmacol Exp Ther; 1986 Oct; 239(1):144-53. PubMed ID: 2428971 [TBL] [Abstract][Full Text] [Related]
9. Binding of a calcium antagonist, [3H]nitrendipine, to high affinity sites in bovine aortic smooth muscle and canine cardiac membranes. Williams LT; Tremble P J Clin Invest; 1982 Jul; 70(1):209-12. PubMed ID: 6282938 [TBL] [Abstract][Full Text] [Related]
10. A comparison between the binding and electrophysiological effects of dihydropyridines on cardiac membranes. Hamilton SL; Yatani A; Brush K; Schwartz A; Brown AM Mol Pharmacol; 1987 Mar; 31(3):221-31. PubMed ID: 2436031 [TBL] [Abstract][Full Text] [Related]
11. Depolarization-dependent binding of the calcium channel antagonist, (+)-[3H]PN200-110, to intact cultured PC12 cells. Greenberg DA; Carpenter CL; Messing RO J Pharmacol Exp Ther; 1986 Sep; 238(3):1021-7. PubMed ID: 2427685 [TBL] [Abstract][Full Text] [Related]
12. Effect of S-312, a new calcium channel blocker, on the 1,4-dihydropyridine binding sites in porcine basilar blood vessels and rat aortic smooth muscle cells. Mihara S; Fujimoto M Jpn J Pharmacol; 1991 Jul; 56(3):249-59. PubMed ID: 1832726 [TBL] [Abstract][Full Text] [Related]
13. Prolonged depolarization increases the pharmacological effect of dihydropyridines and their binding affinity for calcium channels of vascular smooth muscle. Morel N; Godfraind T J Pharmacol Exp Ther; 1987 Nov; 243(2):711-5. PubMed ID: 2824756 [TBL] [Abstract][Full Text] [Related]
14. Effects of dihydropyridine calcium channel modulators on cardiac sodium channels. Yatani A; Kunze DL; Brown AM Am J Physiol; 1988 Jan; 254(1 Pt 2):H140-7. PubMed ID: 2447804 [TBL] [Abstract][Full Text] [Related]
15. Functional dihydropyridine binding site associated with slow calcium channel in rat cultured neurones. Maloteaux JM; Octave JN; Laterre EC Neurosci Lett; 1988 Apr; 87(1-2):168-72. PubMed ID: 2454427 [TBL] [Abstract][Full Text] [Related]
16. Competitive binding experiments reveal differential interactions for dihydropyridine calcium channel activators and antagonists at dihydropyridine receptors on mouse brain membranes. O'Neill SK; Triggle CR; Bolger GT Can J Physiol Pharmacol; 1994 Jul; 72(7):738-45. PubMed ID: 7530159 [TBL] [Abstract][Full Text] [Related]
17. Dihydropyridine inhibition of single calcium channels and contraction in rabbit mesenteric artery depends on voltage. Nelson MT; Worley JF J Physiol; 1989 May; 412():65-91. PubMed ID: 2481035 [TBL] [Abstract][Full Text] [Related]
18. Identification, characterization, and photoaffinity labeling of the dihydropyridine receptor associated with the L-type calcium channel from bovine adrenal medulla. Murphy BJ; Rogers CA; Sunahara RK; Lemaire S; Tuana BS Mol Pharmacol; 1990 Feb; 37(2):173-81. PubMed ID: 2154669 [TBL] [Abstract][Full Text] [Related]
19. Dihydropyridine sensitive calcium channels in a smooth muscle cell line. Kongsamut S; Freedman SB; Miller RJ Biochem Biophys Res Commun; 1985 Feb; 127(1):71-9. PubMed ID: 2579654 [TBL] [Abstract][Full Text] [Related]
20. Calcium currents, charge movement and dihydropyridine binding in fast- and slow-twitch muscles of rat and rabbit. Lamb GD; Walsh T J Physiol; 1987 Dec; 393():595-617. PubMed ID: 2451745 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]