These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 24468407)

  • 1. Left insular cortex and left SFG underlie prismatic adaptation effects on time perception: evidence from fMRI.
    Magnani B; Frassinetti F; Ditye T; Oliveri M; Costantini M; Walsh V
    Neuroimage; 2014 May; 92():340-8. PubMed ID: 24468407
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of posterior parietal cortices on prismatic adaptation effects on the representation of time intervals.
    Magnani B; Mangano GR; Frassinetti F; Oliveri M
    Neuropsychologia; 2013 Nov; 51(13):2825-32. PubMed ID: 23954714
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Time and spatial attention: effects of prism adaptation on temporal deficits in brain damaged patients.
    Magnani B; Oliveri M; Mancuso G; Galante E; Frassinetti F
    Neuropsychologia; 2011 Apr; 49(5):1016-1023. PubMed ID: 21238467
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Supramodal effect of rightward prismatic adaptation on spatial representations within the ventral attentional system.
    Tissieres I; Fornari E; Clarke S; Crottaz-Herbette S
    Brain Struct Funct; 2018 Apr; 223(3):1459-1471. PubMed ID: 29151115
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prismatic adaptation effects on spatial representation of time in neglect patients.
    Oliveri M; Magnani B; Filipelli A; Avanzi S; Frassinetti F
    Cortex; 2013 Jan; 49(1):120-30. PubMed ID: 22200531
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diurnal patterns of activity of the orienting and executive attention neuronal networks in subjects performing a Stroop-like task: a functional magnetic resonance imaging study.
    Marek T; Fafrowicz M; Golonka K; Mojsa-Kaja J; Oginska H; Tucholska K; Urbanik A; Beldzik E; Domagalik A
    Chronobiol Int; 2010 Jul; 27(5):945-58. PubMed ID: 20636208
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prism adaptation enhances decoupling between the default mode network and the attentional networks.
    Wilf M; Serino A; Clarke S; Crottaz-Herbette S
    Neuroimage; 2019 Oct; 200():210-220. PubMed ID: 31233909
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regression of left hyperschematia after prism adaptation: A single case study.
    Di Marco J; Lunven M; Revol P; Christophe L; Jacquin-Courtois S; Vallar G; Rode G
    Cortex; 2019 Oct; 119():128-140. PubMed ID: 31125738
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The functional topography and temporal dynamics of overlapping and distinct brain activations for adaptive task control and stable task-set maintenance during performance of an fMRI-adapted clinical continuous performance test.
    Olsen A; Ferenc Brunner J; Evensen KA; Garzon B; Landrø NI; Håberg AK
    J Cogn Neurosci; 2013 Jun; 25(6):903-19. PubMed ID: 23363414
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Developmental changes in mental arithmetic: evidence for increased functional specialization in the left inferior parietal cortex.
    Rivera SM; Reiss AL; Eckert MA; Menon V
    Cereb Cortex; 2005 Nov; 15(11):1779-90. PubMed ID: 15716474
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The functional anatomy of the McCollough contingent colour after-effect.
    Barnes J; Howard RJ; Senior C; Brammer M; Bullmore ET; Simmons A; David AS
    Neuroreport; 1999 Jan; 10(1):195-9. PubMed ID: 10094161
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prismatic Adaptation Modulates Oscillatory EEG Correlates of Motor Preparation but Not Visual Attention in Healthy Participants.
    Bracco M; Veniero D; Oliveri M; Thut G
    J Neurosci; 2018 Jan; 38(5):1189-1201. PubMed ID: 29255004
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neural mechanisms of visual attention: object-based selection of a region in space.
    Arrington CM; Carr TH; Mayer AR; Rao SM
    J Cogn Neurosci; 2000; 12 Suppl 2():106-17. PubMed ID: 11506651
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of parietal cortex during sustained visual spatial attention.
    Thakral PP; Slotnick SD
    Brain Res; 2009 Dec; 1302():157-66. PubMed ID: 19765554
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Brief Exposure to Leftward Prismatic Adaptation Enhances the Representation of the Ipsilateral, Right Visual Field in the Right Inferior Parietal Lobule.
    Crottaz-Herbette S; Fornari E; Tissieres I; Clarke S
    eNeuro; 2017; 4(5):. PubMed ID: 28955725
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prismatic lenses shift time perception.
    Frassinetti F; Magnani B; Oliveri M
    Psychol Sci; 2009 Aug; 20(8):949-54. PubMed ID: 19549081
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Right hemisphere dominance for auditory attention and its modulation by eye position: an event related fMRI study.
    Petit L; Simon G; Joliot M; Andersson F; Bertin T; Zago L; Mellet E; Tzourio-Mazoyer N
    Restor Neurol Neurosci; 2007; 25(3-4):211-25. PubMed ID: 17943000
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatial attention and representation of time intervals in childhood.
    Magnani B; Musetti A; Frassinetti F
    Sci Rep; 2020 Sep; 10(1):14960. PubMed ID: 32917922
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Categorical and coordinate spatial relations in working memory: an fMRI study.
    van der Ham IJ; Raemaekers M; van Wezel RJ; Oleksiak A; Postma A
    Brain Res; 2009 Nov; 1297():70-9. PubMed ID: 19651111
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The network of brain areas involved in the motion aftereffect.
    Taylor JG; Schmitz N; Ziemons K; Grosse-Ruyken ML; Gruber O; Mueller-Gaertner HW; Shah NJ
    Neuroimage; 2000 Apr; 11(4):257-70. PubMed ID: 10725183
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.