These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 24468426)

  • 1. Evaluating hydraulic and disinfection efficiencies of a full-scale ozone contactor using a RANS-based modeling framework.
    Zhang J; Tejada-Martínez AE; Zhang Q; Lei H
    Water Res; 2014 Apr; 52():155-67. PubMed ID: 24468426
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Indicators for technological, environmental and economic sustainability of ozone contactors.
    Zhang J; Tejada-Martinez AE; Lei H; Zhang Q
    Water Res; 2016 Sep; 101():606-616. PubMed ID: 27322565
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling Cryptosporidium parvum oocyst inactivation and bromate in a flow-through ozone contactor treating natural water.
    Kim JH; Elovitz MS; von Gunten U; Shukairy HM; Mariñas BJ
    Water Res; 2007 Jan; 41(2):467-75. PubMed ID: 17123571
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Residence time and the concentration of microorganism in the ozone contactor: a CFD simulation on chamber deflectors.
    Han X; Zou X; Luo J; Wu J; Deng B
    Environ Sci Pollut Res Int; 2024 Feb; 31(7):11164-11177. PubMed ID: 38217804
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Validation of a simple method for predicting the disinfection performance in a flow-through contactor.
    Pfeiffer V; Barbeau B
    Water Res; 2014 Feb; 49():144-56. PubMed ID: 24321249
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Disinfectant decay and disinfection by-products formation model development: chlorination and ozonation by-products.
    Sohn J; Amy G; Cho J; Lee Y; Yoon Y
    Water Res; 2004 May; 38(10):2461-78. PubMed ID: 15159150
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling Cryptosporidium parvum oocyst inactivation and bromate formation in a full-scale ozone contactor.
    Tang G; Adu-Sarkodie K; Kim D; Kim JH; Teefy S; Shukairy HM; Mariñas BJ
    Environ Sci Technol; 2005 Dec; 39(23):9343-50. PubMed ID: 16382962
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetic assessment and modeling of an ozonation step for full-scale municipal wastewater treatment: micropollutant oxidation, by-product formation and disinfection.
    Zimmermann SG; Wittenwiler M; Hollender J; Krauss M; Ort C; Siegrist H; von Gunten U
    Water Res; 2011 Jan; 45(2):605-17. PubMed ID: 20828780
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Decolorization and control of bromate formation in membrane ozonation of humic-rich groundwater.
    Kämmler J; Zoumpouli GA; Sellmann J; Chew YMJ; Wenk J; Ernst M
    Water Res; 2022 Aug; 221():118739. PubMed ID: 35716412
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigating the suitability of online flow cytometry for monitoring full-scale drinking water ozone system disinfection effectiveness.
    Dowdell KS; Olsen K; Martinez Paz EF; Sun A; Keown J; Lahr R; Steglitz B; Busch A; LiPuma JJ; Olson T; Raskin L
    Water Res; 2024 Jun; 257():121702. PubMed ID: 38749337
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational modeling of ultraviolet disinfection.
    Younis BA; Yang TH
    Water Sci Technol; 2010; 62(8):1872-8. PubMed ID: 20962403
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of magnetic ion exchange and ozonation on disinfection by-product formation.
    Kingsbury RS; Singer PC
    Water Res; 2013 Mar; 47(3):1060-72. PubMed ID: 23286989
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A computational fluid dynamic and experimental study of an ozone contactor.
    Huang T; Brouckaert CJ; Docrat M; Pryor M
    Water Sci Technol; 2002; 46(9):87-93. PubMed ID: 12448456
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rotating packed bed as a novel disinfection contactor for the inactivation of E. coli by ozone.
    Liu T; Wang D; Liu H; Zhao W; Wang W; Shao L
    Chemosphere; 2019 Jan; 214():695-701. PubMed ID: 30292052
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting the disinfection efficiency range in chlorine contact tanks through a CFD-based approach.
    Angeloudis A; Stoesser T; Falconer RA
    Water Res; 2014 Sep; 60():118-129. PubMed ID: 24835958
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Full simulation of disinfection stage in a water recycling plant using low-cost, hybrid 3-dimensional computational fluid dynamics.
    Issakhanian E; Saez JA; Helmns A; Nickles C
    Water Environ Res; 2019 Mar; 91(3):177-184. PubMed ID: 30698899
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ozone inactivation of resistant microorganisms: Laboratory analysis and evaluation of the efficiency of plants.
    Talbot P; Martinelli L; Talvy S; Chauveheid E; Haut B
    Water Res; 2012 Nov; 46(18):5893-903. PubMed ID: 22959560
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A stochastic model of an ozonation reactor.
    Gujer W; von Gunten U
    Water Res; 2003 Apr; 37(7):1667-77. PubMed ID: 12600396
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Implications of sequential use of UV and ozone for drinking water quality.
    Meunier L; Canonica S; von Gunten U
    Water Res; 2006 May; 40(9):1864-76. PubMed ID: 16635504
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measurement of the initial phase of ozone decomposition in water and wastewater by means of a continuous quench-flow system: application to disinfection and pharmaceutical oxidation.
    Buffle MO; Schumacher J; Salhi E; Jekel M; von Gunten U
    Water Res; 2006 May; 40(9):1884-94. PubMed ID: 16624368
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.