These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 24468426)

  • 21. Computational fluid dynamics analysis of the effects of reactor configuration on disinfection efficiency.
    Greene DJ; Haas CN; Farouk B
    Water Environ Res; 2006 Sep; 78(9):909-19. PubMed ID: 17120451
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evaluation of hydraulic efficiency of disinfection systems based on residence time distribution curves.
    Wilson JM; Venayagamoorthy SK
    Environ Sci Technol; 2010 Dec; 44(24):9377-82. PubMed ID: 21090605
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Uncertainty in prediction of disinfection performance.
    Neumann MB; von Gunten U; Gujer W
    Water Res; 2007 Jun; 41(11):2371-8. PubMed ID: 17433404
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evaluation of electrochemically generated ozone for the disinfection of water and wastewater.
    Tanner BD; Kuwahara S; Gerba CP; Reynolds KA
    Water Sci Technol; 2004; 50(1):19-25. PubMed ID: 15318481
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Inactivation of Bacillus subtilis spores during ozonation in water treatment plant: influence of pre-treatment and consequences for positioning of the ozonation step.
    Choi Y; Cho M; Lee Y; Choi J; Yoon J
    Chemosphere; 2007 Oct; 69(5):675-81. PubMed ID: 17604815
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Control-oriented modeling and real-time control for the ozone dosing process of drinking water treatment.
    Wang D; Li S; Zhou X
    Environ Sci Technol; 2013 Mar; 47(5):2197-203. PubMed ID: 23397891
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Sources of parameter uncertainty in predicting treatment performance: the case of preozonation in drinking water engineering.
    Neumann MB; Von Gunten U; Gujer W
    Environ Sci Technol; 2007 Jun; 41(11):3991-6. PubMed ID: 17612180
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A drinking water utility's perspective on bromide, bromate, and ozonation.
    Bonacquisti TP
    Toxicology; 2006 Apr; 221(2-3):145-8. PubMed ID: 16545515
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mechanistic and kinetic evaluation of organic disinfection by-product and assimilable organic carbon (AOC) formation during the ozonation of drinking water.
    Hammes F; Salhi E; Köster O; Kaiser HP; Egli T; von Gunten U
    Water Res; 2006 Jul; 40(12):2275-86. PubMed ID: 16777174
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Quantification of pathogen inactivation efficacy by free chlorine disinfection of drinking water for QMRA.
    Petterson SR; Stenström TA
    J Water Health; 2015 Sep; 13(3):625-44. PubMed ID: 26322749
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ozone-initiated disinfection kinetics of Escherichia coli in water.
    Zuma F; Lin J; Jonnalagadda SB
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2009 Jan; 44(1):48-56. PubMed ID: 19085594
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Elimination of organic micropollutants in a municipal wastewater treatment plant upgraded with a full-scale post-ozonation followed by sand filtration.
    Hollender J; Zimmermann SG; Koepke S; Krauss M; McArdell CS; Ort C; Singer H; von Gunten U; Siegrist H
    Environ Sci Technol; 2009 Oct; 43(20):7862-9. PubMed ID: 19921906
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Inactivation of Escherichia coli by ozone under bench-scale plug flow and full-scale hydraulic conditions.
    Smeets PW; van der Helm AW; Dullemont YJ; Rietveld LC; van Dijk JC; Medema GJ
    Water Res; 2006 Oct; 40(17):3239-48. PubMed ID: 16938335
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Application of CFD modelling at a full-scale ozonation plant for the removal of micropollutants from secondary effluent.
    Launer M; Lyko S; Fahlenkamp H; Jagemann P; Ehrhard P
    Water Sci Technol; 2013; 68(6):1336-44. PubMed ID: 24056432
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Optimization of conditions of ozone water disinfection by the method of the mathematical planning of an experiment].
    Kir'ianova EV
    Gig Sanit; 1996; (4):3-6. PubMed ID: 9005184
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The effects of combined ozonation and filtration on disinfection by-product formation.
    Karnik BS; Davies SH; Baumann MJ; Masten SJ
    Water Res; 2005 Aug; 39(13):2839-50. PubMed ID: 15993463
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Modeling of bromate formation by ozonation of surface waters in drinking water treatment.
    Legube B; Parinet B; Gelinet K; Berne F; Croue JP
    Water Res; 2004 Apr; 38(8):2185-95. PubMed ID: 15087201
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A novel approach to modeling the reaction kinetics of tetracycline antibiotics with aqueous ozone.
    Hopkins ZR; Blaney L
    Sci Total Environ; 2014 Jan; 468-469():337-44. PubMed ID: 24041601
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A low-energy intensive electrochemical system for the eradication of Escherichia coli from ballast water: process development, disinfection chemistry, and kinetics modeling.
    Nanayakkara KG; Alam AK; Zheng YM; Chen JP
    Mar Pollut Bull; 2012 Jun; 64(6):1238-45. PubMed ID: 22483951
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Impact of a magnetic ion exchange resin on ozone demand and bromate formation during drinking water treatment.
    Johnson CJ; Singer PC
    Water Res; 2004 Oct; 38(17):3738-50. PubMed ID: 15350426
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.