These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 24468448)

  • 1. The interconnectedness between landowner knowledge, value, belief, attitude, and willingness to act: policy implications for carbon sequestration on private rangelands.
    Cook SL; Ma Z
    J Environ Manage; 2014 Feb; 134():90-9. PubMed ID: 24468448
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Perceptions of Utah ranchers toward carbon sequestration: policy implications for US rangelands.
    Ma Z; Coppock DL
    J Environ Manage; 2012 Nov; 111():78-86. PubMed ID: 22831793
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Willingness of Non-Industrial Private Forest Owners to Enter California's Carbon Offset Market.
    Kelly EC; Gold GJ; Di Tommaso J
    Environ Manage; 2017 Nov; 60(5):882-895. PubMed ID: 28836080
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantification and mapping of the supply of and demand for carbon storage and sequestration service in woody biomass and soil to mitigate climate change in the socio-ecological environment.
    Sahle M; Saito O; Fürst C; Yeshitela K
    Sci Total Environ; 2018 May; 624():342-354. PubMed ID: 29258035
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Agroforestry: a sustainable environmental practice for carbon sequestration under the climate change scenarios-a review.
    Abbas F; Hammad HM; Fahad S; Cerdà A; Rizwan M; Farhad W; Ehsan S; Bakhat HF
    Environ Sci Pollut Res Int; 2017 Apr; 24(12):11177-11191. PubMed ID: 28281063
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of pastoralism in regulating ecosystem services.
    Seid MA; Kuhn NJ; Fikre TZ
    Rev Sci Tech; 2016 Nov; 35(2):435-444. PubMed ID: 27917981
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Models of reforestation productivity and carbon sequestration for land use and climate change adaptation planning in South Australia.
    Hobbs TJ; Neumann CR; Meyer WS; Moon T; Bryan BA
    J Environ Manage; 2016 Oct; 181():279-288. PubMed ID: 27372250
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamics and climate change mitigation potential of soil organic carbon sequestration.
    Sommer R; Bossio D
    J Environ Manage; 2014 Nov; 144():83-7. PubMed ID: 24929498
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carbon benefits of wolfberry plantation on secondary saline land in Jingtai oasis, Gansu--A case study on application of the CBP model.
    Wang Y; Zhao C; Ma Q; Li Y; Jing H; Sun T; Milne E; Easter M; Paustian K; Au Yong HW; McDonagh J
    J Environ Manage; 2015 Jul; 157():303-10. PubMed ID: 25925391
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of biological monitoring and results outreach on private landowner conservation management.
    Lutter SH; Dayer AA; Heggenstaller E; Larkin JL
    PLoS One; 2018; 13(4):e0194740. PubMed ID: 29617388
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Landowner Perceptions of Payments for Nature Conservation on Private Land.
    Yasué M; Kirkpatrick JB; Davison A; Gilfedder L
    Environ Manage; 2019 Sep; 64(3):287-302. PubMed ID: 31359092
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carbon sequestration in European croplands.
    Smith P; Falloon P
    SEB Exp Biol Ser; 2005; ():47-55. PubMed ID: 17633030
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluating the demand for carbon sequestration in olive grove soils as a strategy toward mitigating climate change.
    Rodríguez-Entrena M; Barreiro-Hurlé J; Gómez-Limón JA; Espinosa-Goded M; Castro-Rodríguez J
    J Environ Manage; 2012 Dec; 112():368-76. PubMed ID: 22967822
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tasmanian landowner preferences for conservation incentive programs: a latent class approach.
    Putten vI; Jennings SM; Louviere JJ; Burgess LB
    J Environ Manage; 2011 Oct; 92(10):2647-56. PubMed ID: 21719189
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Land-use and carbon cycle responses to moderate climate change: implications for land-based mitigation?
    Humpenöder F; Popp A; Stevanovic M; Müller C; Bodirsky BL; Bonsch M; Dietrich JP; Lotze-Campen H; Weindl I; Biewald A; Rolinski S
    Environ Sci Technol; 2015 Jun; 49(11):6731-9. PubMed ID: 25939014
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relating farmer's perceptions of climate change risk to adaptation behaviour in Hungary.
    Li S; Juhász-Horváth L; Harrison PA; Pintér L; Rounsevell MDA
    J Environ Manage; 2017 Jan; 185():21-30. PubMed ID: 28029477
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Global potential of biospheric carbon management for climate mitigation.
    Canadell JG; Schulze ED
    Nat Commun; 2014 Nov; 5():5282. PubMed ID: 25407959
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The United States Department of Energy's Regional Carbon Sequestration Partnerships program: a collaborative approach to carbon management.
    Litynski JT; Klara SM; McIlvried HG; Srivastava RD
    Environ Int; 2006 Jan; 32(1):128-44. PubMed ID: 16054694
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Soil carbon sequestration and biochar as negative emission technologies.
    Smith P
    Glob Chang Biol; 2016 Mar; 22(3):1315-24. PubMed ID: 26732128
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessment of USDA-NRCS rangeland conservation programs: recommendation for an evidence-based conservation platform.
    Briske DD; Bestelmeyer BT; Brown JR; Brunson MW; Thurow TL; Tanaka JA
    Ecol Appl; 2017 Jan; 27(1):94-104. PubMed ID: 27870290
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.