BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

472 related articles for article (PubMed ID: 24468750)

  • 21. Effect of solvent on the self-assembly of dialanine and diphenylalanine peptides.
    Rissanou AN; Georgilis E; Kasotakis E; Mitraki A; Harmandaris V
    J Phys Chem B; 2013 Apr; 117(15):3962-75. PubMed ID: 23510047
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hierarchical, interface-induced self-assembly of diphenylalanine: formation of peptide nanofibers and microvesicles.
    Huang R; Su R; Qi W; Zhao J; He Z
    Nanotechnology; 2011 Jun; 22(24):245609. PubMed ID: 21543826
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Rational Coarse-Grained Molecular Dynamics Simulations of Supramolecular Anticancer Nanotubes.
    Manandhar A; Chakraborty K; Tang PK; Kang M; Zhang P; Cui H; Loverde SM
    J Phys Chem B; 2019 Dec; 123(50):10582-10593. PubMed ID: 31749360
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Molecular modeling and computational study of the chiral-dependent structures and properties of self-assembling diphenylalanine peptide nanotubes.
    Bystrov VS; Zelenovskiy PS; Nuraeva AS; Kopyl S; Zhulyabina OA; Tverdislov VA
    J Mol Model; 2019 Jun; 25(7):199. PubMed ID: 31240406
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Diphenylalanine peptide nanotubes self-assembled on functionalized metal surfaces for potential application in drug-eluting stent.
    Zohrabi T; Habibi N; Zarrabi A; Fanaei M; Lee LY
    J Biomed Mater Res A; 2016 Sep; 104(9):2280-90. PubMed ID: 27119433
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structural Properties of Phenylalanine-Based Dimers Revealed Using IR Action Spectroscopy.
    Stroganova I; Bakels S; Rijs AM
    Molecules; 2022 Apr; 27(7):. PubMed ID: 35408770
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Multiscale, Multiresolution Coarse-Grained Model via a Hybrid Approach: Solvation, Structure, and Self-Assembly of Aromatic Tripeptides.
    Hooten M; Banerjee A; Dutt M
    J Chem Theory Comput; 2024 Feb; 20(4):1689-1703. PubMed ID: 37931005
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structural and optical properties of short peptides: nanotubes-to-nanofibers phase transformation.
    Handelman A; Natan A; Rosenman G
    J Pept Sci; 2014 Jul; 20(7):487-93. PubMed ID: 24895323
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Initial Aggregation and Ordering Mechanism of Diphenylalanine from Microsecond All-Atom Molecular Dynamics Simulations.
    Anderson J; Lake PT; McCullagh M
    J Phys Chem B; 2018 Dec; 122(51):12331-12341. PubMed ID: 30511861
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bionanosphere lithography via hierarchical peptide self-assembly of aromatic triphenylalanine.
    Han TH; Ok T; Kim J; Shin DO; Ihee H; Lee HS; Kim SO
    Small; 2010 Apr; 6(8):945-51. PubMed ID: 20397209
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Molecular Dynamics Simulation of Self-Assembly Processes of Diphenylalanine Peptide Nanotubes and Determination of Their Chirality.
    Bystrov V; Likhachev I; Filippov S; Paramonova E
    Nanomaterials (Basel); 2023 Jun; 13(13):. PubMed ID: 37446422
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Self-assembly of diphenylalanine peptides on graphene
    Rissanou AN; Keliri A; Arnittali M; Harmandaris V
    Phys Chem Chem Phys; 2020 Dec; 22(47):27645-27657. PubMed ID: 33283818
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Solvent Controlled Structural Transition of KI4K Self-Assemblies: from Nanotubes to Nanofibrils.
    Zhao Y; Deng L; Wang J; Xu H; Lu JR
    Langmuir; 2015 Dec; 31(47):12975-83. PubMed ID: 26540520
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Self-assembling diphenylalanine peptide nanotubes selectively eradicate bacterial biofilm infection.
    Porter SL; Coulter SM; Pentlavalli S; Thompson TP; Laverty G
    Acta Biomater; 2018 Sep; 77():96-105. PubMed ID: 30031161
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Honeycomb self-assembled peptide scaffolds by the breath figure method.
    Du M; Zhu P; Yan X; Su Y; Song W; Li J
    Chemistry; 2011 Apr; 17(15):4238-45. PubMed ID: 21387428
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Diversity and Hierarchy in Supramolecular Assemblies of Triphenylalanine: From Laminated Helical Ribbons to Toroids.
    Mayans E; Casanovas J; Gil AM; Jiménez AI; Cativiela C; Puiggalí J; Alemán C
    Langmuir; 2017 Apr; 33(16):4036-4048. PubMed ID: 28374591
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Kinetic and Thermodynamic Driving Factors in the Assembly of Phenylalanine-Based Modules.
    Zaguri D; Zimmermann MR; Meisl G; Levin A; Rencus-Lazar S; Knowles TPJ; Gazit E
    ACS Nano; 2021 Nov; 15(11):18305-18311. PubMed ID: 34694771
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Bioinspired peptide nanostructures for organic field-effect transistors.
    Cipriano T; Knotts G; Laudari A; Bianchi RC; Alves WA; Guha S
    ACS Appl Mater Interfaces; 2014 Dec; 6(23):21408-15. PubMed ID: 25376495
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dipeptide concave nanospheres based on interfacially controlled self-assembly: from crescent to solid.
    Wang J; Shen G; Ma K; Jiao T; Liu K; Yan X
    Phys Chem Chem Phys; 2016 Nov; 18(45):30926-30930. PubMed ID: 27722335
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Morphology, energetics and growth kinetics of diphenylalanine fibres.
    Rodger PM; Montgomery C; Costantini G; Rodger A
    Phys Chem Chem Phys; 2021 Feb; 23(8):4597-4604. PubMed ID: 33620048
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 24.