These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 24468914)

  • 1. Spark plasma sintering of Mn-Al-C hard magnets.
    Pasko A; LoBue M; Fazakas E; Varga LK; Mazaleyrat F
    J Phys Condens Matter; 2014 Feb; 26(6):064203. PubMed ID: 24468914
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A comparison of τ-MnAl particulates produced via different routes.
    Chaturvedi A; Yaqub R; Baker I
    J Phys Condens Matter; 2014 Feb; 26(6):064201. PubMed ID: 24468799
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermal stability of MnBi magnetic materials.
    Cui J; Choi JP; Li G; Polikarpov E; Darsell J; Overman N; Olszta M; Schreiber D; Bowden M; Droubay T
    J Phys Condens Matter; 2014 Feb; 26(6):064212. PubMed ID: 24469323
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Influence of Powder Milling on Properties of SPS Compacted FeAl.
    Michalcová A; Özkan M; Mikula P; Marek I; Knaislová A; Kopeček J; Vojtěch D
    Molecules; 2020 May; 25(9):. PubMed ID: 32403351
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative study on Ti-Nb binary alloys fabricated through spark plasma sintering and conventional P/M routes for biomedical application.
    Karre R; Kodli BK; Rajendran A; J N; Pattanayak DK; Ameyama K; Dey SR
    Mater Sci Eng C Mater Biol Appl; 2019 Jan; 94():619-627. PubMed ID: 30423747
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Asymmetric reversal in aged high concentration CuMn alloy.
    Barnsley LC; MacA Gray E; Webb CJ
    J Phys Condens Matter; 2013 Feb; 25(8):086003. PubMed ID: 23361044
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hf-Co and Zr-Co alloys for rare-earth-free permanent magnets.
    Balamurugan B; Das B; Zhang WY; Skomski R; Sellmyer DJ
    J Phys Condens Matter; 2014 Feb; 26(6):064204. PubMed ID: 24468962
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Insertion of a single-molecule magnet inside a ferromagnetic lattice based on a 3D bimetallic oxalate network: towards molecular analogues of permanent magnets.
    Clemente-León M; Coronado E; Gómez-García CJ; López-Jordà M; Camón A; Repollés A; Luis F
    Chemistry; 2014 Feb; 20(6):1669-76. PubMed ID: 24327555
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microstructure and Sintering Behaviors of Al-Cr-
    Kim YH; Yoo HS; Son HT
    J Nanosci Nanotechnol; 2021 Sep; 21(9):4768-4772. PubMed ID: 33691864
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New permanent magnets; manganese compounds.
    Coey JM
    J Phys Condens Matter; 2014 Feb; 26(6):064211. PubMed ID: 24469291
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanical Milling-Assisted Spark Plasma Sintering of Fine-Grained W-Ni-Mn Alloy.
    Pan Y; Xiang D; Wang N; Li H; Fan Z
    Materials (Basel); 2018 Jul; 11(8):. PubMed ID: 30065176
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Micromagnetic analysis of the hardening mechanisms of nanocrystalline MnBi and nanopatterned FePt intermetallic compounds.
    Kronmüller H; Yang JB; Goll D
    J Phys Condens Matter; 2014 Feb; 26(6):064210. PubMed ID: 24469256
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface hardening of Al alloys through controlled ball-milling and sintering.
    Kim SH; Kim YJ; Ahn JH
    J Nanosci Nanotechnol; 2012 Jul; 12(7):5514-8. PubMed ID: 22966601
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spark plasma sintering synthesis of porous nanocrystalline titanium alloys for biomedical applications.
    Nicula R; Lüthen F; Stir M; Nebe B; Burkel E
    Biomol Eng; 2007 Nov; 24(5):564-7. PubMed ID: 17869173
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spark plasma sintered Sm(2)Co(17)-FeCo nanocomposite permanent magnets synthesized by high energy ball milling.
    Sreenivasulu G; Gopalan R; Chandrasekaran V; Markandeyulu G; Suresh KG; Murty BS
    Nanotechnology; 2008 Aug; 19(33):335701. PubMed ID: 21730627
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-strength nanograined and translucent hydroxyapatite monoliths via continuous hydrothermal synthesis and optimized spark plasma sintering.
    Chaudhry AA; Yan H; Gong K; Inam F; Viola G; Reece MJ; Goodall JB; ur Rehman I; McNeil-Watson FK; Corbett JC; Knowles JC; Darr JA
    Acta Biomater; 2011 Feb; 7(2):791-9. PubMed ID: 20883835
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis and Spark Plasma Sintering of Soft Magnetic Composite in a Fe₂O₃–Al System by Mechanical Alloying.
    Lee CH
    J Nanosci Nanotechnol; 2017 Apr; 17(4):2453-456. PubMed ID: 29648756
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dysprosium-free melt-spun permanent magnets.
    Brown DN; Wu Z; He F; Miller DJ; Herchenroeder JW
    J Phys Condens Matter; 2014 Feb; 26(6):064202. PubMed ID: 24468854
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimized Route for the Fabrication of MnAlC Permanent Magnets by Arc Melting.
    Martínez-Sánchez H; Gámez JD; Valenzuela JL; Colorado HD; Marín L; Rodríguez LA; Snoeck E; Gatel C; Zamora LE; Pérez Alcázar GA; Tabares JA
    Molecules; 2022 Nov; 27(23):. PubMed ID: 36500440
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spark Plasma Sintering of Aluminum-Based Powders Reinforced with Carbon Nanotubes: Investigation of Electrical Conductivity and Hardness Properties.
    Ulloa-Castillo NA; Martínez-Romero O; Hernandez-Maya R; Segura-Cárdenas E; Elías-Zúñiga A
    Materials (Basel); 2021 Jan; 14(2):. PubMed ID: 33466693
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.