BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

290 related articles for article (PubMed ID: 24469075)

  • 1. Remodelling at the calyx of Held-MNTB synapse in mice developing with unilateral conductive hearing loss.
    Grande G; Negandhi J; Harrison RV; Wang LY
    J Physiol; 2014 Apr; 592(7):1581-600. PubMed ID: 24469075
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Presynaptic Diversity Revealed by Ca
    Lujan B; Dagostin A; von Gersdorff H
    J Neurosci; 2019 Apr; 39(16):2981-2994. PubMed ID: 30679394
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Morphological and functional continuum underlying heterogeneity in the spiking fidelity at the calyx of Held synapse in vitro.
    Grande G; Wang LY
    J Neurosci; 2011 Sep; 31(38):13386-99. PubMed ID: 21940432
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Changes in Properties of Auditory Nerve Synapses following Conductive Hearing Loss.
    Zhuang X; Sun W; Xu-Friedman MA
    J Neurosci; 2017 Jan; 37(2):323-332. PubMed ID: 28077712
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conductive Hearing Loss Has Long-Lasting Structural and Molecular Effects on Presynaptic and Postsynaptic Structures of Auditory Nerve Synapses in the Cochlear Nucleus.
    Clarkson C; Antunes FM; Rubio ME
    J Neurosci; 2016 Sep; 36(39):10214-27. PubMed ID: 27683915
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conductive hearing loss disrupts synaptic and spike adaptation in developing auditory cortex.
    Xu H; Kotak VC; Sanes DH
    J Neurosci; 2007 Aug; 27(35):9417-26. PubMed ID: 17728455
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of a robust central auditory synapse in congenital deafness.
    Youssoufian M; Oleskevich S; Walmsley B
    J Neurophysiol; 2005 Nov; 94(5):3168-80. PubMed ID: 16000524
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibitory glycinergic neurotransmission in the mammalian auditory brainstem upon prolonged stimulation: short-term plasticity and synaptic reliability.
    Kramer F; Griesemer D; Bakker D; Brill S; Franke J; Frotscher E; Friauf E
    Front Neural Circuits; 2014; 8():14. PubMed ID: 24653676
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Delayed expression of activity-dependent gating switch in synaptic AMPARs at a central synapse.
    Lesperance LS; Yang YM; Wang LY
    Mol Brain; 2020 Jan; 13(1):6. PubMed ID: 31941524
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synaptic Inhibition of Medial Olivocochlear Efferent Neurons by Neurons of the Medial Nucleus of the Trapezoid Body.
    Torres Cadenas L; Fischl MJ; Weisz CJC
    J Neurosci; 2020 Jan; 40(3):509-525. PubMed ID: 31719165
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synaptic plasticity of inhibitory synapses onto medial olivocochlear efferent neurons.
    Torres Cadenas L; Cheng H; Weisz CJC
    J Physiol; 2022 Jun; 600(11):2747-2763. PubMed ID: 35443073
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Developmental profiles of the intrinsic properties and synaptic function of auditory neurons in preterm and term baboon neonates.
    Kim SE; Lee SY; Blanco CL; Kim JH
    J Neurosci; 2014 Aug; 34(34):11399-404. PubMed ID: 25143619
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Developmental changes in short-term plasticity at the rat calyx of Held synapse.
    Crins TT; Rusu SI; Rodríguez-Contreras A; Borst JG
    J Neurosci; 2011 Aug; 31(32):11706-17. PubMed ID: 21832200
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SK Channels Regulate Resting Properties and Signaling Reliability of a Developing Fast-Spiking Neuron.
    Zhang Y; Huang H
    J Neurosci; 2017 Nov; 37(44):10738-10747. PubMed ID: 28982705
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Considerable differences between auditory medulla, auditory midbrain, and hippocampal synapses during sustained high-frequency stimulation: Exceptional vesicle replenishment restricted to sound localization circuit.
    Brill SE; Janz K; Singh A; Friauf E
    Hear Res; 2019 Sep; 381():107771. PubMed ID: 31394425
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synaptic transmission at the calyx of Held under in vivo like activity levels.
    Hermann J; Pecka M; von Gersdorff H; Grothe B; Klug A
    J Neurophysiol; 2007 Aug; 98(2):807-20. PubMed ID: 17507501
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acid-Sensing Ion Channels Activated by Evoked Released Protons Modulate Synaptic Transmission at the Mouse Calyx of Held Synapse.
    González-Inchauspe C; Urbano FJ; Di Guilmi MN; Uchitel OD
    J Neurosci; 2017 Mar; 37(10):2589-2599. PubMed ID: 28159907
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Topographic map refinement and synaptic strengthening of a sound localization circuit require spontaneous peripheral activity.
    Müller NIC; Sonntag M; Maraslioglu A; Hirtz JJ; Friauf E
    J Physiol; 2019 Nov; 597(22):5469-5493. PubMed ID: 31529505
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Contribution of the mouse calyx of Held synapse to tone adaptation.
    Lorteije JA; Borst JG
    Eur J Neurosci; 2011 Jan; 33(2):251-8. PubMed ID: 21198978
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural and Functional Development of Inhibitory Connections from the Medial Nucleus of the Trapezoid Body to the Superior Paraolivary Nucleus.
    Lee J; Clause A; Kandler K
    J Neurosci; 2023 Nov; 43(46):7766-7779. PubMed ID: 37734946
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.