These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 24469156)

  • 1. Chemical and morphological changes during olivine carbonation for CO2 storage in the presence of NaCl and NaHCO3.
    Gadikota G; Matter J; Kelemen P; Park AH
    Phys Chem Chem Phys; 2014 Mar; 16(10):4679-93. PubMed ID: 24469156
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimized carbonation of magnesium silicate mineral for CO2 storage.
    Eikeland E; Blichfeld AB; Tyrsted C; Jensen A; Iversen BB
    ACS Appl Mater Interfaces; 2015 Mar; 7(9):5258-64. PubMed ID: 25688577
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aqueous carbonation of peridotites for carbon utilisation: a critical review.
    Rashid MI; Benhelal E; Anderberg L; Farhang F; Oliver T; Rayson MS; Stockenhuber M
    Environ Sci Pollut Res Int; 2022 Oct; 29(50):75161-75183. PubMed ID: 36129648
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sequestration of Martian CO2 by mineral carbonation.
    Tomkinson T; Lee MR; Mark DF; Smith CL
    Nat Commun; 2013; 4():2662. PubMed ID: 24149494
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbon sequestration via aqueous olivine mineral carbonation: role of passivating layer formation.
    Béarat H; McKelvy MJ; Chizmeshya AV; Gormley D; Nunez R; Carpenter RW; Squires K; Wolf GH
    Environ Sci Technol; 2006 Aug; 40(15):4802-8. PubMed ID: 16913142
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Steel slag carbonation in a flow-through reactor system: the role of fluid-flux.
    Berryman EJ; Williams-Jones AE; Migdisov AA
    J Environ Sci (China); 2015 Jan; 27():266-75. PubMed ID: 25597686
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced olivine carbonation within a basalt as compared to single-phase experiments: reevaluating the potential of CO2 mineral sequestration.
    Sissmann O; Brunet F; Martinez I; Guyot F; Verlaguet A; Pinquier Y; Daval D
    Environ Sci Technol; 2014 May; 48(10):5512-9. PubMed ID: 24735106
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Factors affecting the direct mineralization of CO2 with olivine.
    Kwon S; Fan M; DaCosta HF; Russell AG
    J Environ Sci (China); 2011; 23(8):1233-9. PubMed ID: 22128528
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of secondary phase formation on the carbonation of olivine.
    King HE; Plümper O; Putnis A
    Environ Sci Technol; 2010 Aug; 44(16):6503-9. PubMed ID: 20704252
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Morphological changes during enhanced carbonation of asbestos containing material and its comparison to magnesium silicate minerals.
    Gadikota G; Natali C; Boschi C; Park AH
    J Hazard Mater; 2014 Jan; 264():42-52. PubMed ID: 24269972
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A review on ex situ mineral carbonation.
    Yadav S; Mehra A
    Environ Sci Pollut Res Int; 2021 Mar; 28(10):12202-12231. PubMed ID: 33405167
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CO2 sequestration utilizing basic-oxygen furnace slag: Controlling factors, reaction mechanisms and V-Cr concerns.
    Su TH; Yang HJ; Shau YH; Takazawa E; Lee YC
    J Environ Sci (China); 2016 Mar; 41():99-111. PubMed ID: 26969055
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mineral sequestration of CO(2) by aqueous carbonation of coal combustion fly-ash.
    Montes-Hernandez G; Pérez-López R; Renard F; Nieto JM; Charlet L
    J Hazard Mater; 2009 Jan; 161(2-3):1347-54. PubMed ID: 18539389
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct mineral carbonation of steelmaking slag for CO2 sequestration at room temperature.
    Rushendra Revathy TD; Palanivelu K; Ramachandran A
    Environ Sci Pollut Res Int; 2016 Apr; 23(8):7349-59. PubMed ID: 26681331
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changes in mineralogical and leaching properties of converter steel slag resulting from accelerated carbonation at low CO2 pressure.
    van Zomeren A; van der Laan SR; Kobesen HB; Huijgen WJ; Comans RN
    Waste Manag; 2011 Nov; 31(11):2236-44. PubMed ID: 21741816
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Permanent CO
    Menefee AH; Giammar DE; Ellis BR
    Environ Sci Technol; 2018 Aug; 52(15):8954-8964. PubMed ID: 29983056
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of CO2 capture by ex-situ accelerated carbonation and in in-situ naturally weathered coal fly ash.
    Muriithi GN; Petrik LF; Fatoba O; Gitari WM; Doucet FJ; Nel J; Nyale SM; Chuks PE
    J Environ Manage; 2013 Sep; 127():212-20. PubMed ID: 23764471
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reaction Mechanism of Wollastonite In Situ Mineral Carbonation for CO
    Kashim MZ; Tsegab H; Rahmani O; Abu Bakar ZA; Aminpour SM
    ACS Omega; 2020 Nov; 5(45):28942-28954. PubMed ID: 33225124
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbonation of cementitious wasteforms under supercritical and high pressure subcritical conditions.
    Venhuis MA; Reardon EJ
    Environ Technol; 2003 Jul; 24(7):877-87. PubMed ID: 12916839
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reaction kinetics of CO2 carbonation with Mg-rich minerals.
    Kwon S; Fan M; Dacosta HF; Russell AG; Tsouris C
    J Phys Chem A; 2011 Jul; 115(26):7638-44. PubMed ID: 21627148
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.