These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 2446927)

  • 1. A mechanism for the RNA-catalyzed formation of 5'-phosphates. The origin of nucleases.
    Cedergren R; Lang BF; Gravel D
    FEBS Lett; 1987 Dec; 226(1):63-6. PubMed ID: 2446927
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Artificial ribonucleases.
    Morrow JR
    Adv Inorg Biochem; 1994; 9():41-74. PubMed ID: 7511321
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of solvent nucleophile isotope effects: evidence for concerted mechanisms and nucleophilic activation by metal coordination in nonenzymatic and ribozyme-catalyzed phosphodiester hydrolysis.
    Cassano AG; Anderson VE; Harris ME
    Biochemistry; 2004 Aug; 43(32):10547-59. PubMed ID: 15301552
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Energetics of catalysis by ribonucleases: fate of the 2',3'-cyclic phosphodiester intermediate.
    Thompson JE; Venegas FD; Raines RT
    Biochemistry; 1994 Jun; 33(23):7408-14. PubMed ID: 8003506
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Catalysis of hydrolysis and nucleophilic substitution at the P-N bond of phosphoimidazolide-activated nucleotides in phosphate buffers.
    Kanavarioti A; Rosenbach MT
    J Org Chem; 1991; 56(4):1513-21. PubMed ID: 11538282
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dinuclear Zn(II) complex catalyzed phosphodiester cleavage proceeds via a concerted mechanism: a density functional theory study.
    Gao H; Ke Z; DeYonker NJ; Wang J; Xu H; Mao ZW; Phillips DL; Zhao C
    J Am Chem Soc; 2011 Mar; 133(9):2904-15. PubMed ID: 21319769
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of a novel member of 2H phosphoesterases, 2',5'-oligoadenylate degrading ribonuclease from the oyster Crassostrea gigas.
    Lopp A; Reintamm T; Kuusksalu A; Olspert A; Kelve M
    Biochimie; 2019 Jan; 156():181-195. PubMed ID: 30195052
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reconsidering the energetics of ribonuclease catalysed RNA hydrolysis.
    Loverix S; Laus G; Martins JC; Wyns L; Steyaert J
    Eur J Biochem; 1998 Oct; 257(1):286-90. PubMed ID: 9799130
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Catalytic metal ions and enzymatic processing of DNA and RNA.
    Palermo G; Cavalli A; Klein ML; Alfonso-Prieto M; Dal Peraro M; De Vivo M
    Acc Chem Res; 2015 Feb; 48(2):220-8. PubMed ID: 25590654
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanism and specificity of RNA cleavage by chemical ribonucleases.
    Beloglazova N; Vlassov A; Konevetc D; Sil'nikov V; Zenkova M; Giege R; Vlassov V
    Nucleosides Nucleotides; 1999; 18(6-7):1463-5. PubMed ID: 10474226
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Studies on extracellular ribonucleases of Ustilago sphaerogena. Characterization of substrate specificity with special reference to purine-specific ribonucleases.
    Arima T; Uchida T; Egami F
    Biochem J; 1968 Feb; 106(3):609-13. PubMed ID: 5639916
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Why nature chose phosphates.
    Westheimer FH
    Science; 1987 Mar; 235(4793):1173-8. PubMed ID: 2434996
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The degradation of ribonucleic acid in the cotyledons of Pisum arvense.
    Barker GR; Hollinshead JA
    Biochem J; 1967 Apr; 103(1):230-7. PubMed ID: 6033762
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Double sugar and phosphate backbone-constrained nucleotides: synthesis, structure, stability, and their incorporation into oligodeoxynucleotides.
    Zhou C; Plashkevych O; Chattopadhyaya J
    J Org Chem; 2009 May; 74(9):3248-65. PubMed ID: 19348480
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Theoretical evaluation of the substrate-assisted catalysis mechanism for the hydrolysis of phosphate monoester dianions.
    Iché-Tarrat N; Ruiz-Lopez M; Barthelat JC; Vigroux A
    Chemistry; 2007; 13(13):3617-29. PubMed ID: 17290469
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ribonucleases of diverse specificities in rabbit brain nuclei.
    Pantopoulos K; Georgatsos JG
    Eur J Biochem; 1992 Aug; 207(3):1045-51. PubMed ID: 1499550
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The relationship between RNA catalytic processes.
    Cedergren R; Lang BF; Gravel D
    Orig Life Evol Biosph; 1988; 18(3):299-305. PubMed ID: 2465524
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Immobilized nucleases.
    Reddy LG; Shankar V
    Crit Rev Biotechnol; 1993; 13(3):255-73. PubMed ID: 7693354
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aliphatic analogues of nucleotides: synthesis and affinity towards nucleases.
    Holý A; Ivanova GS
    Nucleic Acids Res; 1974 Jan; 1(1):19-34. PubMed ID: 10793656
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure of RNase Sa2 complexes with mononucleotides--new aspects of catalytic reaction and substrate recognition.
    Bauerová-Hlinková V; Dvorský R; Perecko D; Povazanec F; Sevcík J
    FEBS J; 2009 Aug; 276(15):4156-68. PubMed ID: 19558492
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.